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Coughing is a common symptom of pulmonary ailment and serves as a valuable measure

when quantifying pulmonary health. This dissertation contains the results of the research

and development of a set of techniques to enable researchers to investigate pulmonary health

through cough sounds. A variety of signal processing and machine learning approaches are

included, each with various performance and usability tradeoffs. We propose a novel algo-

rithm that makes use of the best of the traditional signal processing approaches, combined

with the recent advances in deep learning to provide new cough detection and classification

results previously unattainable, especially when considered in the context of model runtime

performance. We detail the construction a classifier for tuberculosis coughs, and develop a

new tool to deal with bifurcated datasets we dub a discriminative adversarial network.
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Chapter 1

INTRODUCTION

1.1 Overview and Motivation

Pulmonary ailments account for four of the top ten causes for death worldwide and are

especially prevalent in low-income countries [60]. It is estimated that over 1 billion people

worldwide suffer from pulmonary disease [25]. Coughing is a symptom of many of these

ailments, including (but not limited to) asthma, tuberculosis, cystic fibrosis, lower respiratory

infection, chronic obstructive pulmonary disease, and over a hundred others [37]. Symptom

tracking is an important part of the health care process at all stages, whether for screening

the general public to find new cases, assessing new patients, or tracking long-term cases

[43, 30]. Current systems to track pulmonary ailments through cough sounds include patient

self-reporting, manual cough counting and analysis, and automated cough frequency trackers

[54, 30, 32]. Self-reporting of cough frequency and cough characteristics has been shown to

lack the accuracy necessary for usage in clinical situations [7]. Manual cough counting, due

to the unpredictable and intermittent nature of coughs, can be a very time-intensive process

requiring a dedicated listener to record all cough events over a time duration large enough to

gather cough data for diagnostic purposes. Automated cough frequency trackers of varying

accuracies for different applications exist [4, 5, 7, 9, 8, 45, 11, 24, 39, 46, 54, 59], each lying

as a point within a large trade-off space with dimensions of automation, accuracy, runtime

requirements and privacy considerations. A deeper inspection of related cough detection

work is given in section 2.3.1.

Current tools for cough analysis focus on cough frequency as the primary metric to be

tracked. While this metric is valuable [43, 30, 37], medical professionals hypothesize that as

different pulmonary ailments can afflict the pulmonary system and air pathways in different
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ways, the acoustic signature of coughs from patients with these ailments may change in both

overt and subtle ways [37, 1]. One of the most common classifications is to draw a distinction

between “wet” and “dry” coughs. A “wet” cough is one in which a pulmonary ailment has

caused a buildup of sputum, a mixture of saliva and mucus, within the lungs that is ejected

from the lungs during the expulsive phase of a cough. While there has been some preliminary

study into the automatic classification of cough types into “wet” vs. “dry” classes [15, 57],

there is still much work to be done towards creating a framework for cough sound analysis.

We provide a more detailed view of related cough classification work in section 2.3.2.

To date, cough recording research has typically been separated into two distinct ap-

proaches: either attempting to classify a pre-segmented cough sound recorded in a clinical

setting based upon certain cough characteristics [1, 2, 54, 57, 15], or detecting the presence

of coughs in an ambulatory sensing modality such as giving the patient a recorder to carry

on their person as they travel throughout the day [4, 5, 7, 9, 8, 45, 11, 24, 39, 46, 54, 59].

In the former, human effort is typically required to first locate and properly segment cough

sounds for the cough classification algorithms. In the latter, the recorder may store a variety

of signals such as audio data, ECG or other contact and non-contact sensors to be used for

cough detection. The recordings are then analyzed by algorithm, human annotators or both,

to result in an estimate of number of coughs per hour.

Cough sounds are not expected to become a primary diagnostic tool for pulmonary dis-

ease; however the official World Health Organization guidelines for the diagnosis of pul-

monary ailments such as childhood pneumonia result in low enough performance that the

addition of markers within cough signals has the potential to significantly increase diag-

nostic performance, especially within the context of the developing world [1]. Building an

algorithm for automated cough analysis can therefore impact the medical world along mul-

tiple fronts. We list three potentially interesting applications of this technology, which will

serve as motivating examples as we explore the tradeoff space in section TODO: X.X.X:

• Mobile cough counter : Implemented as a cough detection algorithm on a personal
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mobile computation device with a microphone such as a mobile phone or smartwatch,

this application would enable ubiquitous, personal pulmonary health tracking through

constant cough detection. This application requires efficient algorithms so as to have

as little impact on power usage as possible, to lengthen device lifetime, and to coexist

with other classification algorithms such as personal digital assistants.

• Listening station: Implemented as a cough detection algorithm on a stationary device

such as a smart speaker, this application would enable nighttime cough tracking for

sleep studies and population cough counting for epidemiological studies where the

cough station is located in public settings such as doctor’s office waiting rooms. The

ability for all computation to be performed locally on the device is critical for user

privacy in this application, so that no raw audio is ever stored or transmitted outside

of the device.

• Clinical tool : Implemented as a cough classification algorithm on a device such as

a smartphone, this application would enable cheap screening methodologies for pul-

monary ailments. We draw a clear distinction between cough detection algorithms,

which typically must run faster than real-time and consume minimal computational

resources for power and computational budget reasons, and cough classification algo-

rithms which typically are only run once a cough has been identified, either manually

or through a previously run cough detection algorithm. As such, cough classification

algorithms do not have the same computational budgets applied to them and can run

much slower than real-time.

1.2 Thesis Statement and Research Contributions

The state of current tools is insufficient to support the applications shown above, and as

such new tools must be developed. This motivation directly introduces our thesis statement:

Cough sounds contain underutilized pulmonary health information
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that can be extracted through novel applications of signal processing

and deep learning.

The specific research contributions contained with this thesis are as follows:

• Algorithms for cough detection: This thesis work contains a state-of-the-art cough de-

tection algorithm in terms of accuracy while simultaneously achieving excellent runtime

performance, enabling new applications on embedded platforms.

• Algorithms for cough classification: By applying the same basic algorithm to cough

classification instead of detection, we are able to build what is, to our knowledge, the

first tuberculosis cough detector. We analyze its accuracy and provide guidelines for

future work in extending capabilities for more effective cough sound analysis.

• Techniques for highly imbalanced datasets : The datasets collected in support of this

dissertation are sub-optimal, and using them naively results in serious deficiencies in

the trained models. We introduce novel methods to combat dataset imbalance that

builds off of recent advances in the machine learning fields, applying it to our models

with great effect.

This dissertation will begin with an overview of relevant cough detection and classification

research in sections 2.3.1 and 2.3.2, then introduce necessary machine learning concepts in

section 2.4. Introduction of our cough detection and classification algorithm will be given

in chapter 3, with special attention paid to our handling of imbalanced datasets in chapter

4. We explicitly address the challenges of insufficient training data through a combination

of models with a restricted set of parameters, data augmentation and adversarial networks

to counter dataset imbalance. These chapters will analyze the results both in terms of

detection/classification accuracy as well as runtime performance, with a final wrap-up in

chapter 5.
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Chapter 2

BACKGROUND AND RELATED WORK

Pulmonary research is a well-established field that has received a wealth of research into

the maladies and ailments that can befall populations worldwide. A small portion of this

research has been focused on the diagnostic implications of cough sounds and the systematic

detection of them. We will give here a brief overview of background information as well as

related work, split into categories based on the nature of the work and how it relates to the

proposal at hand.

2.1 Cough Recordings as a Clinical Tool

Coughs, being rapid forced exhalatory maneuvers, have rich temporal and spectral repre-

sentations which contain a wide variation across varying pulmonary conditions [37], giving

rise to the supposition that these sounds may, through analysis, yield information about the

pulmonary condition of the patient that coughed. Cough sounds can be segmented into three

rough time periods, as visualized in Figure 2.1 [37]. The three time periods are labeled the

inspiratory cough phase, the compressive cough phase, and the expulsive cough phase.

As cough sound recordings obtain data primarily within the expulsive cough phase, all

cough recording papers restrict themselves to analysis within this temporal phase and do

not attempt to segment out inspiratory or compressive cough phases. Within the expulsive

cough phase, there is still a broad variation of cough sounds, as shown in Figure 2.2 [37], and

Figure 2.3 [1]. We introduce this distinction to properly separate this work from the medical

research that is interested in the mechanics of coughs during these pre-expulsive phases.

All cough classification efforts seek to quantify various properties of the expulsive cough

phase, such as its ”wetness” or ”dryness”, referring to a cough that does or does not produce
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Figure 2.1: From Korpás et al. [37], showing glottal position, recorded sound, airflow and

pressure within the esophagus for two example coughs, segmented into three time regions.

sputum when the patient coughs. This sputum (biological byproduct typically created due

to the body’s immune response to an infection within the lungs) causes a ”rattling” sound

within the patients chest as they cough. The effect ranges from subtle to extremely prominent

depending on a variety of factors, one of which is the severity of pulmonary disease causing the

buildup of sputum within the lungs in the first place, and serves as an important diagnostic

component when trying to quantify the severity of a pulmonary ailment within a patient.

2.2 Overview of Cough Analysis

Cough sounds have long been known to be of diagnostic interest to pulmonologists. In 1996,

Korpás et al. gave an overview of the analysis of cough sound records, or ”tussiphonograms”,

as they are often referred to as [37]. Korpás performed basic signal processing operations

upon the captured signals, inspecting the time domain waveforms and frequency domain

periodograms in a clinical setting. Of particular interest is the conclusion that the cough and

the results of spirometry tests contain separate pieces of information, as while administering
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Figure 2.2: The variation of sound recordings of the expulsive segment of a cough, from

Korpás et al. [37]

bronchodilating drugs to patients would alter the spirometry results, it would leave the cough

analysis results relatively unchanged.

In 2014, Spinou and Birring gave another overview of the measurement and monitoring

of cough, with an explicit emphasis on the tools available to medical professionals that

wish to investigate cough sounds and their frequency [54]. Spinou and Birring note that

beyond simply cough frequency there are other dimensions upon which information from

coughs can be extractedl; however, all of the available systems that are capable of extracting

this information are at best semi-automatic, and in the end require a human to perform the

actual classification. Note that their analysis included only systems that can take ambulatory

recordings and extract cough sounds from them, they did not include systems intended to

classify pre-segmented cough sounds.

Drugman et al. investigated the sensors most likely to be able to extract information about

coughs, evaluating contact and non-contact microphones, electrocardiography sensors, chest

belts, accelerometers and thermistors placed over under the patient’s nose [24]. Their analysis
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determined that, given the choice of a single sensor, non-contact microphones contained

significantly more information about the cough than any other sensor.

2.3 Related Cough Signal Processing

In this section we will give a brief overview of work that has attempted to detect, analyze or

classify coughs using a variety of sensing modalities. We will report sensitivity (the ability for

the algorithm to detect a cough sound when it actually occurred, also known as true positive

rate) and specificity (the ability for the algorithm to reject a sound when it is actually not

a cough sound, also known as true negative rate) for each comparison algorithm, as these

metrics are the typical measurements to be used.

2.3.1 Cough Detection

Barry et al. used Linear Predictive Coding and Mel-Frequency Cepstral Coefficients to model

the sound of coughs, and used a Probabilistic Neural Network to classify time windows as

containing a cough or not [7]. This system, published as the Hull Automatic Cough Counter

requires a human to perform the final cough count after being presented with the windows

of time containing cough sounds, so as to deal with false positives and multiple coughs

overlapping into a single classification. An hour of recorded audio could then be reviewed

in, on average, 1 minute 35 seconds, substantially increasing the amount of data health care

professionals could process.

Matos et al. fed Mel-Frequency Cepstral Coefficients (and derivatives of the same) into

a Hidden Markov Model (HMM) to determine the location of coughs in the recordings [45].

Interestingly, the structure of the finite state machine that the HMM represented contained

multiple (approximately 10) left-to-right sub-states for coughs, leading one to theorize that

perhaps the HMM was able to learn some structure within the cough sounds themselves,

with no domain knowledge other than the number of sub-states within the cough state.

Building off of the work of Matos et al., Birring et al. designed the Leicester Cough Mon-

itor, an ambulatory system designed to use the same general system as previously published
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by Matos et al. and validate its usage in a more naturalistic setting [11]. Using a portable

recorder and a microphone that the user clips to their shirt, the patients are able to go about

their lives while gaining a 6-hour audio recording of their daily dealings and, in particular,

their coughs. These coughs are automatically analyzed by an offline processing algorithm,

the results are reviewed by a human operator, then a second algorithm improves upon the

original algorithm’s detections. This second study vastly increased the number of coughs and

the variety of sounds captured in the recordings as compared to the original study performed

by Matos et al. Additionally, the authors investigated the repeatability of their results by

testing patients with chronic cough disorders again three months after the fact and ensuring

that the results were the same.

Barton et al. used a system published as VitaloJAK, a two-channel recording device that

uses both a contact microphone on the chest as well as a non-contact microphone to simplify

the signal processing challenge of disambiguating cough sounds from other acoustic events

[9, 8]. The system then calculates various running statistics on the short-time spectrum of

the signals, and captures regions of the signal that have high energy and high spectral center

of gravity. Once these periods of high energy/spectral center of gravity are determined, the

coughs are counted manually. This system, similar to that of Barry et al. [7] is primarily used

as a kind of data compression system, heavily reducing the amount of data that a human

operator must classify in order to obtain cough counts.

Amrulloh et al. used a wide variety of signal features (Mel-Frequency Cepstral Coeffi-

cients, Formant Frequency, Shannon Entropy, Zero-Crossing Rate, and Non-Gaussianity) fed

into a Time-Delay Neural Network to segment cough sounds [5]. The authors expend much

effort to accurately find not only the start times of coughs, but the end times as well, giving

the ability to measure not only cough frequency but cough duration as well.

Monge-Alvarez et al. used Hu moments with a KNN classifier to obtain a sensitivity of

88% with a specificity of 96% [47]. Their contribution included a thorough analysis of why

Hu moments, despite their computational complexity are a good foundational basis for cough

detection, especially in the presence of noise. For our purposes, we discount Hu moments as
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too computationally expensive to be used as a feature-space transformation (They were found

to take an order of magnitude more computational complexity than a spectral estimation

technique such as gammatone filterbanks, corroborated by [47]).

You et al. employed spectral subbands fed into linear SVMs to detect cough sounds [61].

Their detection work paid special attention to the performance of their classifiers within the

presence of noise; synthesizing noise as well as collecting data with intentional sources of

noise in teh background. They were able to achieve a sensitivity of 78% and a specificity of

88%.

Amoh et a. developed a deep learning system similar to that proposed later within this

very dissertation [3]. Utilizing convolutional networks in a similar fashion to many recent

computer vision models, they were able to obtain a sensitivity of 82% and a specificity of 93%.

They also investigated using a recurrent neural architecture for variable-length segmentation,

which did not perform quite as well, obtaining a sensitivity of 84% but a specificity of 75%.

Larson et al. used eigenvector decompositions of cough sounds fed into a Random Forest

classifier to detect coughs [39]. Of particular note is the unusually high accuracy attained by

the authors as well as the development of a ”privacy-preserving” feature of the algorithm;

the raw audio data, as part of the analysis process, is transformed through the eigenvector

matrix built during training, destroying the intelligibility of any speech in the audio recording

but retaining the cough sounds enough to perform cough detection. This is a feature many

medical professionals desire, as it eliminates the privacy concerns of retaining large amounts

of speech data of users that are not necessarily affiliated with the study at all.

2.3.2 Cough Classification

Many groups have done research throughout the past few decades to develop automatic

systems to classify various attributes of coughs such as whether the cough is wet/dry or the

intensity of the cough. Various diseases such as Asthma, Tuberculosis, Bronchitis, etc., can

have very prominent effects on the pulmonary system and are therefore identifiable through

the changes they affect upon the sounds of coughs. The identification of these changes to
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a typical cough sound is the challenge of cough classification, a brief overview of which we

include here:

Al-khassaweneh and Abdelrahman used Wigner Distribution functions and Wavelet Packet

Transforms to analyze the time-frequency energy distributions of cough sounds to detect

asthma [2]. Their analysis showed that asthmatic patients tended to have coughs with dif-

ferent energy signatures than non-asthmatic patients. In particular, asthmatic coughs had

classifiably more energy, especially in the low frequency/long scale bins.

Subbaraj et al. employed a bandpass temporal energy estimate of cough recordings to

classify the intensity of a cough [56]. They also investigate potential visualizations for their

cough counting methods, mapping classified cough intensity versus time, to give a high

level overview of a patient’s cough activity over long periods of time. While the cough

detection and wet/dry classification done is not automatic and requires human intervention,

the intensity regression is.

Swarnkar et al. used a wide variety of signal processing methods to differentiate wet

and dry coughs [57]. Their methods included analyzing spectral energy, temporal envelope,

and time-independent waveform statistics such as kurtosis, fed into a Logistic Regression

Model. Of particular note is the inconsistency of the human ground-truth scoring of coughs

as wet/dry; The authors employed two domain experts to perform the scoring, and the two

experts agreed on only 80% of all cough events. This underscores the difficulty of such a

classifier; even among human domain experts, what constitutes a wet cough versus a dry

cough is not completely well defined. The accepted approach in this and other works is to

use only the events upon which a majority of expert annotators are in agreement, and to

ignore the others.

Chatrzarrin et al. explicitly break cough sounds down into multiple temporal and spectral

regions [15]. By inspecting the energy of the signal across time and in a few different

frequency bands, the authors were able to identify patterns in the energy envelopes consistent

in wet versus dry coughs. It is worth noting that in contrast to many other related works in

this case only eight coughs were used for evaluation.
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Figure 2.3: Abeyratne et al. display the variation of coughs from patients with different

pulmonary ailments [1].

Abeyratne et al. analyzed cough sounds to diagnose asthma in pediatric patients [1].

Using a combination of time-series statistics (such as Non-Gaussianity score, kurtosis, etc..),

formant-frequency tracking, general temporal-spectral energy-based features (MFCCs) and

others, the authors built a logistic regression model to classify children as either Pneumonia

or non-Pneumonia. They note the usefulness of cough sounds to diagnose a wide array of

pulmonary ailments, providing a visualization of some of the variations within coughs of four

different cough recordings, included here as Figure 2.3. Although their cough classification

accuracies are not as high as many of the other references, their standard to measure against
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and measurement point to beat are the World Health Organization guidelines for diagnosing

pneumonia, which give (on the set of 91 patients) a sensitivity of 83% and a specificity of

47% for an overall accuracy of 75%. This underscores the relatively low bar that many of

these algorithms need to overcome in order to be useful in the medical field.

Much more recently, Botha et al. built a system to detect tuberculosis using cough sounds

[12]. Using a logistic regression on the log-power of overlapped spectral bands in combina-

tion with non-invasive clinical measurements (including mid upper arm circumference, body

temperature, body mass index, eye conjunctiva and heart rate), they were able to obtain an

impressive sensitivity of 82% with a specificity of 95%. Using only log spectral features, their

sensitivity dropped to 60% with a specificity of 78%. A key difference between this work

and others is that the control cough dataset consisted of forced coughs by users without any

other recorded pulmonary ailments.

2.3.3 Relation to Thesis

These related works listed above, separated into the two broad categories of detection versus

classification serve to provide a baseline and minimum bar of performance that our work

must meet or exceed in order to be considered competitive. Summaries of this previous work

are given in tables 2.1 and 2.2 to show the relative detection performance and collection of

classification tasks previous work has attempted for quick and easy reference.

These collected works also illustrate the wide variety of research questions surrounding

coughs as a clinical tool and underscore the interest the medical community has in performing

this analysis. We also wish to explicitly point out the varying applications and subsequent

performance levels expected of published research in these fields. For some cases, such

as automatic ambulatory cough detection, specificity appears to be very desirable, as a key

metric reported by almost every publication is the number of false alarms per hour. However,

in the case of a nighttime cough tracker, sensitivity is not quite as critical for the algorithm

to be effective, as the number and type of acoustic events requiring classification will be

much more limited.
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Publication Results Auto Coughs Methods

Barry [7]
Sensitivity: 80%

Specificity: 96%
Partially 75 LPC/MFCC’s with a PNN

Matos [45]

Birring [11]

Sensitivity: 91%

Specificity: 99%
Partially 1834

MFCC’s with an HMM, followed by

human-guided detection algorithms

Barton [8] Sensitivity: 98% Partially 1932
Dual microphones with spectral energy

thresholds and human operators

Amrulloh [5]
Sensitivity: 91%

Specificity: 97%
Fully 1434

A variety of features with a TDNN,

on pediatric coughs

Monge-Alvarez [47]
Sensitivity: 88%

Specificity: 96%
Fully N/A Hu moments with a KNN classifier

You [61]
Sensitivity: 78%

Specificity: 88%
Fully N/A

Spectral subband features fed into

linear SVMs

Amoh [3]
Sensitivity: 82%

Specificity: 93%
Fully 627 STFT visually classified using CNNs

Larson [39]
Sensitivity: 92%

Specificity: 99%
Fully 2558

Eigenvector features with a random

forests classifier

Table 2.1: Summary of previous cough detection work showing the results, whether the

method was partially or fully automated, the size of the dataset in number of coughs, and

the methods employed.
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Publication Task Results Auto Coughs Methods

Al-khassaweneh [2] Asthma Sensitivity: 88% Fully 24
Spectral estimation

with KNN

Subbaraj [56] Intensity Accuracy: 98% Partially 215
Temporal energy-

based regression

Swarnkar [57] Wet/Dry
Sensitivity: 55%

Specificity: 93%
Fully 536

A variety of features

with an LRM

Chatrzarrin [15] Wet/Dry
Sensitivity: 100%

Specificity: 100%
Fully 8

Spectral/temporal

thresholding

Abeyratne [1] Pneumonia
Sensitivity: 80%

Specificity: 73%
Fully 440

A variety of features

with an LRM

Botha [12] Tuberculosis
Sensitivity: 82%

Specificity: 95%
Fully 518

Log-spectral bands

with an LRM and

clinical metrics

Table 2.2: Summary of previous cough classification work showing what classification task

was attempted, the results, whether the method was partially or fully automatic, the size of

the dataset in number of coughs, and the methods employed.
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2.4 Deep Learning

Our cough detection and classification algorithms make use of the recent advances in machine

learning technologies yielded by the advent of “deep learning” [40, 53]. Historically, signal

processing algorithms and machine learning models would be expert systems, designed by hu-

mans with deep domain knowledge taking advantage of physical or mathematical properties

of the signals being analyzed in order to extract relevant information. Deep learning seeks to

reduce the required expert knowledge by allowing computations of the correct type and shape

to automatically learn the parameters for the computations through back-propagation [53].

We will give here a brief introduction to the deep learning paradigm, and discuss challenges

faced when building these systems.

2.4.1 Neural Networks

Deep learning is built upon the research outcomes developed over the past half-century

in investigating what are commonly known as “neural networks”. Created as a simplistic

mechanical biomimicry of neurons in the human brain, a “neural network” is a nonlinear

function approximator. The simplest form of a neural network is the “perceptron”; an affine

function of its inputs, passed through some form of nonlinearity:

f(X) = σ

(∑
i

WiXi + b

)
(2.1)

Equation 2.1 shows a perceptron (f) operating upon a vector of inputs (X) that are

linearly combined with a vector of weights (W ) and a bias term (b) [40]. This affine trans-

formation results in a single value which is finally passed through the nonlinear warping

function σ.

The function f(X), typically viewed as a predictor or regressor of the inputs, is typically

matched with an expected output (Y ), and the parameters of the computation (W and b)

must be set such that f(X) = Y ). The benefit to this formulation is the ease with which

it can be analyzed through the viewpoint of differentiable programming. Because f(X) is
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composed of operations with well-defined derivatives with respect to the inputs X, it is

simple application of the chain rule to calculate ∂f
∂W

and ∂f
∂b

(assuming, for the moment, that

σ(x) is the identity function, that is, σ(x) = x):

∂

∂W
f(X) =

∂

∂W

(∑
i

WiXi + b

)

=
∑
i

∂

∂W
(WiXi)

=
∑
i

Xi (2.2)

∂

∂b
f(X) =

∂

∂b

(∑
i

WiXi + b

)

=
∂

∂b
(b)

= 1 (2.3)

This allows us to manipulate W and b to effect a desired change in the output for a given

input. By defining a “loss” function as a measurement of the difference between the current

output of f(X) and the desired output Y , then using that loss to inform how W and b should

be modified in order to move the output of f(X) closer to Y , we are able to “learn” optimal

values of W and b:

`2(f(X), Y ) = ‖f(X)− Y ‖2
2 (2.4)

Minimizing `2(f(X), Y ) across a wide set ofX → Y mappings by tweaking the parameters

W and b yields the least-squares solution to the optimization problem:

minimize
W, b

`2(f(x), y) (2.5)

⇒ minimize
W, b

∥∥∥∥∥σ
(∑

i

WiXi + b

)
− Y

∥∥∥∥∥
2

2

This technique, known as gradient descent, lies at the heart of all neural network learning

techniques, and is made possible by building computational models that are able to calculate
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derivatives of the output with respect to all parameters being optimized. The operation of

tracing derivatives backwards from the loss function to parameters is referred to as back-

propagation. The typical formulation for gradient descent is to define a “training loop”

wherein new X → Y mappings are used to calculate a loss, that loss is used to find new

derivatives (also referred to as gradients) for parameters W and b, those derivatives are

scaled by a learning rate (η) and finally accumulated into the parameters themselves, as

shown in algorithm 1. Each iteration of the training loop (comprising a full pass over the

entire training set S) is referred to as an epoch. Training time is typically measured in

epochs, and model convergence criteria is also typically evaluated at epoch granularity.

ALGORITHM 1: Gradient descent training procedure

Input: X and Y from dataset S, parameters W and b, learning rate η

Output: Updated weights W and b

// Loop over all entries in training set S

for X,Y ∈ S do

// Calculate output using current Wt and bt

Ŷ = f(X)

// Determine loss between calculated output and target output

L = `2(Ŷ , Y )

// Update parameters using backpropagated gradients

W = W + η
(

∂f
∂W L

)
b = b+ η

(
∂f
∂bL

)
end

Although in its most simple formulation the entire training set S can be calculated on at

once, this is rarely done in practice. Rather, the training set S is typically broken up into

minibatches containing a limited number of training examples (sizes from 1 to 1024 are often

seen in practice [40]). This method of operating upon and optimizing for a small subset of

the full training set at a time is known as stochastic gradient descent, and is the foundation
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Figure 2.4: Diagram of a multilayer perceptron, graphically depicting the flow of information

from an input layer of 5 neurons (xi) to an intermediate layer of 3 neurons, to an output layer

of two neurons (yi). Each connecting line conains an independent weight that multiplies the

value of the source node on the left, and is summed together with all other lines entering the

destination node on the right.

for the learning methods used upon all neural networks in this dissertation.

2.4.2 Deeper Networks

A single perceptron, as given in equation 2.1, is capable of learning functions of very limited

complexity. As stated above, the only functions capable of being learnt are affine trans-

formations (with the exception that the nonlinearity σ, ignored so far, can add some vital

complexity in and of itself, however we will soon see that σ is typically a very simple non-

linearity itself). In order to increase the complexity of functions that can be learnt by the

neural network, we simply add another set of transformations on to the end of the first,

cascading a similar set of operations onto the end of the first. This is shown graphically in
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Figure 2.4, where multiple perceptrons have been grouped together to form a “multilayer

perceptron” (MLP). Each node with lines feeding into it within the diagram denotes a single

perceptron taking in the values from the previous set of nodes, multiplying those values by

the “weights” implied by the graphical line, summing them together and then applying a

nonlinearity to that sum. In Figure 2.4, there are two “layers” of perceptrons feeding from

a layer of input nodes.

This stacking of operations shows the necessity of including a nonlinear term within

the formulation of a perceptron; without a nonlinearity, stacks of affine operations could

always be reduced to a single equivalent affine operation, limiting the scope of functions

that could be learnt to simply affine ones. On the other hand, the nonlinear elements must

be sufficiently simple that they have an easily computed derivative for backpropagation to

be able to derive useful gradients for parameters throughout the neural network. With

these constraints in mind, the families of neural network techniques naturally arise, with

extremely simple nonlinearities such as the “ReLU”, “ELU” and “tanh” functions used widely

in contemporary machine learning literature [40]. These functions and their derivatives are

shown in Table 2.3, demonstrating their simplicity.

Stacks of multilayer perceptrons have been used to great effect as general-purpose non-

linear function approximators. The ability to combine stacks of relatively simple nonlinear

pieces to model more complex nonlinear functions has unlocked many new applications and

yielded impressive results on machine learning tasks from many separate fields. The coun-

terpoint to this is that the straightforward fully-connected layers of neurons shown in Figure

2.4 cause an explosion in the number of parameters that must be learned from training data.

The number of parameters in each layer grows as O (n2) in the number of input variables

n. In order for a statistically-constrained model such as a neural network to converge, the

number of training examples used to train must exceed the number of degrees of freedom

within the model by a sufficient threshold to constrain the parameters meaningfully. Data

augmentation techniques such as perturbing inputs [58] or model augmentation techniques

such as adding dropout [55] and introducing regularization constraints [38] can alleviate
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Function Definition Derivative

ReLU [40]

x, for x ≥ 0

0, for x < 0

1, for x ≥ 0

0, for x < 0

ELU [19]

x, for x ≥ 0

α (ex − 1) , for x < 0

1, for x ≥ 0

α (ex − 1)− 1, for x < 0

Leaky ReLU [44]

x, for x ≥ 0

αx, for x < 0

1, for x ≥ 0

α, for x < 0

Sigmoid [40]
1

1 + e−x

1

1 + e−x

(
1− 1

1 + e−x

)

Table 2.3: Example nonlinearities used in deep neural networks, showcasing their simplicity

and easily computed derivatives.

some of the need for vast quantities of data; however there remains an intrinsic relationship

between the number of parameters within a model and the number of training examples

required for a model to stably converge. In this thesis, we explicitly address the problem of

insufficient data through a combination of models with a restricted set of parameters, data

augmentation, and adversarial networks.

2.4.3 Convolutional Neural Networks

Convolutional neural networks [6, 41] (CNNs) provide an excellent foundation for building

detection and classification systems for signals that have information that is ”localized”. First

introduced three decades ago [6], they have found a resurgence in recent years in the computer

vision field for their impressive ability to learn joint localized probability distributions in

images. A single object within the image will be represented in pixels that are neighboring

each other, therefore a network that seeks to extract information about that object may not

need to simultaneously draw information from all pixels at once, but may be able to restrict
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∗ =

Figure 2.5: Diagram of a convolutional neural network, graphically depicting a convolution

between a 3-channel input tensor and a convolutional kernel in red. The convolutional kernel

is shifted over the domain of the input tensor, calculating a weighted sum at each position

and generating a single output pixel per shifted location in the input. The generated output

plane of pixels is shown in blue.

its view to small neighborhoods of input. A convolutional neural network finds shift-invariant

joint probability distributions inherent within the input signal that can be used by further

networks in later layers. This can be viewed as a kind of ”pattern matching”, and maps

very well to the traditional signal processing operation of using convolutional operations to

create a matched filter, where the patterns being searched for in a CNN are learned through

backpropagation and gradient descent. Mathematically, the pattern match probabilities are

calculated through the fundamental convolution equation:

O(x, y, j) =
m∑
i=1

s−1∑
u,v=0

(
K(u, v, i, j)I(x+ u, y + v, i)

)
+ B(j) (2.6)

Where the input tensor I ∈ Rw×h×m is transformed by the kernel tensor K ∈ Rs×s×m×n,

added to the bias tensor B ∈ Rn to create the output tensor O ∈ Rw×h×n, and each element

of the output tensor O represents the likelihood of a particular pattern existing at that

location within the input tensor. The parameters w and h represent the input tensor width

and height respectively, while m and n represent the channels of the input and output
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tensors. We note that the learned parameters K are independent of input data size and are

typically orders of magnitude smaller than the data they operate on. The number of learned

parameters also does not scale with input size, it is a function only of the number of patterns

to be sifted out of the input image, and the size of pattern to be determined. This greatly

reduces the amount of data necessary for training, and has found large success in computer

vision applications. Convolutional networks serve to continually extract information and

reduce the dimensionality of input data until a final detection/classification stage which is

applied once the data rank is small enough to be amenable to more traditional neural network

architectures, such as fully connected layers.

2.4.4 Adversarial Networks

Generative adversarial networks (GANs) are a deep learning method for transforming one

signal domain to match the distribution of another [28]. GANs have been proven to be a

state-of-the-art method for matching the distribution of datasets. For example, in a process

known as style transfer, GANs are used to reconstruct an image in a manner stylistically

similar to a target image [34]. A GAN operates by taking a standard deconvolutional network

that operates upon noise as an input and produces an image and pairs it with a discriminator

network that is trained to distinguish generated (fake) images from the target images. During

training, the accuracy of the discriminator is used as a loss term for the generative network.

The loss produced by the discriminator effectively forces the generative network to learn the

distribution of the target dataset in order to consistently fool the discriminator.

In this thesis, we take the concept of a GAN and introduce a small modification we

call the discriminative adversarial network (DAN). We apply a DAN to ensure that our

classification algorithm learns features independent of data collection site, an essential detail

when attempting to fuse two highly imbalanced data collections. This DAN operates in

opposition to the classification network, forcing portions of the classification network to not

make use of patterns or information within the input data that could be used to determine

which data collection the data originated from. In essence, it forces the model to ignore
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certain pieces of information that would otherwise heavily bias the model predictions. The

DAN will be described in greater detail in Chapter 4.
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Chapter 3

TECHNIQUES FOR COUGH SOUND ANALYSIS

As stated in section 1.2, a key research contribution of this dissertation is the development

of algorithms for cough detection and cough classification. In this chapter, we will detail

the development of these algorithms, comparing different methods and relating them to the

applications listed in chapter 1. We will compare and contrast previous methodologies with

two new algorithms for cough detection, paying special attention to the design criteria listed

in section 3.2, and then discuss performance of one of these detection architectures upon a

cough classification task.

3.1 Dataset

Our machine learning models are trained upon what is, to our knowledge, the largest cough

sound database collected in the world. The dataset was collected from two separate sites:

an Ambulatory dataset and a Clinical dataset. Although each were collected for distinct

purposes, we will show that the combination of both poses challenges and provides oppor-

tunities for developing more robust and useful machine learning models than either dataset

used independently. The audio recordings in both cases were annotated by a team of expert

annotators trained to detect cough sounds.

The ambulatory dataset was collected at the University of Washington and consists of 64.3

hours of audio taken from 17 subjects (7 female) already known to exhibit cough symptoms

before enrollment; 8 participants were diagnosed with a cold, 5 with chronic cough due to

various reasons including smoking, 3 with asthma and 1 with allergies. A total of 2420 coughs

are represented in this dataset. The ambulatory dataset was collected by participants wearing

a smartphone as a personal recorder device on their persons and recording 3-6 hours of data



26

Coughs (TB) Participants (Female) Total Length Combined Cough Length

Clinical 2273 (1924) 84 (34) 82.5 hrs 13.5 mins

Ambulatory 2420 (0) 17 (7) 64.3 hrs 11.1 mins

Total 4693 (1924) 101 (41) 147.7 hrs 24.6 mins

Table 3.1: Dataset breakdown by number of coughs captured, participant demographics, and

total recording length in hours.

as they went about their daily activities. Represented within this dataset are a multitude

of other audio sources such as human speech, motor vehicles, laughter, and sounds as the

mobile device moved about.

The clinical dataset was collected at the Desmond Tutu HIV Foundation through a

partnership with the Gates Foundation and consists of 52.6 hours of audio taken from 56

participants (27 female), 45 of whom were previously diagnosed with pulmonary tuberculosis.

A total of 2273 coughs are represented in this dataset, with 1924 of those coughs produced

by TB-positive subjects. The clinical dataset was collected by participants sitting in a closed

room with a TV playing in the background for 1 hour. Represented within this dataset are

human speech, TV noise, and various background sounds such as door closing and a whirring

fan.

For cough classification tasks, it is imperative that mixing data from separate data collec-

tions does not cause the machine learning model to simply distinguish which site a recording

came from due to the model learning some commonality within datasets such as the acous-

tics of the room. This would cause the model to learn about the environment the cough

sounds were collected within as opposed to the cough sounds themselves. As detailed in

the paragraphs above, our datasets are a prime example of unbalanced datasets where this

would be a problem, as all tuberculosis coughs are contained within the clinical dataset, and

almost all of the control coughs are contained within the ambulatory dataset. To address

this imbalance, we will utilize a Discriminative Adversarial Network (DAN) to ensure that
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the machine learning model learns more than just differences in data collection sites when

training classification models. This is described in greater detail in chapter 4.

All data collections were approved by the Institutional Review Board at their respective

collection sites.

3.2 Model Design Criteria

Section 2.3.1 listed multiple research efforts to build automated cough detection algorithms.

We note that while there are a wide variety of different methods surveyed, there exist broad

similarities, especially among systems that seek to disambiguate coughs from other common

sonic events. All systems follow the same basic pattern: to chop streams of audio up into

small time segments (referred to as frames), perform some type of feature-space transforma-

tion/dimensionality reduction upon each frame individually, then feed those features into a

machine learning model to classify that collection of frames as either a cough or a non-cough

event. While variations upon this theme abound, this technique has found wide adoption

within the signal processing and machine learning communities for its applicability to almost

any signal detection/classification problem.

There are a few fundamental assumptions inherent in applying a machine learning model

to a new problem:

• First, it is assumed that the machine learning task is possible; that the machine learn-

ing model contains the necessary mathematical expressiveness to separate, regress or

otherwise process the input information into the desired output. A counter-example

to this is attempting to use a linear model to approximate an extremely nonlinear

phenomenon; in general it is impossible for the model to faithfully approximate such

a function.

• Second, it is assumed that the statistically-determined elements of the machine learn-

ing model (the parameters) are given enough training data to be able to converge to

reasonable values. A counter-example to this is attempting to train a linear model
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containing 100 parameters on a dataset with only 10 input/output mappings; with

such a dearth of data, the parameters within the model will be grossly underspecified,

and in general will not perform well on new data it has not trained on.

• Third, it is assumed that the machine learning model’s output can be obtained in an

environment that is useful to the application at hand. A counter-example to this is

building a model that cannot be executed within the resource constraints of a mobile

or embedded platform that the application requires.

It is extremely important to ensure that these assumptions are given due consideration

when applying machine learning to a new problem, and cough sound analysis is no exception.

Traditional signal processing addresses the first assumption through domain-specific fea-

ture engineering. As an example, an impressive amount of literature exists on speech signal

processing, and many techniques exist for decomposing speech signals across various axes of

information. Linear Predictive Coding (LPC) models the vocal tract as a series of resonant

cavities, decoupling the effect of the vocal cords from the shaping influence of the vocal tract.

Mel-Frequency Cepstral Coefficients (MFCCs) use a biologically-inspired spectral decompo-

sition to break audio signals down into an unevenly sampled time-frequency distribution that

mimics the human auditory peripheral system’s response to sound. Both of these techniques

significantly reduce the complexity of speech signals from the standpoint of a machine learn-

ing model. Information previously scattered throughout the time-domain signal is extracted

and collected into bins in frequency, or as coefficients of a much lower-dimensional polyno-

mial. This information extraction is hand-designed by human experts that have knowledge

of the signals being analyzed and are thus able to make inferences about the nature of the

information being analyzed and which pieces of information are most important to extract,

which can be discarded, and what format of information would be most advantageous to

present to a machine learning algorithm. This hand-tuned feature extraction serves to si-

multaneously reduce input dimensionality (thereby reducing the number of parameters that

must be learned within a model) and preprocess data into a simpler format for the machine
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learning model, reducing the necessary complexity of the model itself.

The advent of deep learning brings with it new capabilities for automation in feature

selection and design. Automatic feature extraction is an area of active research, attempting

to take the ideas of backpropagation and gradient descent to their logical extremes and

learn parameters for the entire pipeline of operations, from raw audio data input to model

output. Efforts towards this have shown impressive results in some domains by allowing

backpropagation to alter feature-space transformations that may not otherwise have been

optimal with regards to the eventual output of the network. This approach is able to reduce

or even eliminate human effort in designing the first stages of the machine learning pipeline,

however it inherently increases the number of parameters that must be learned, thereby

increasing the amount of data necessary to satisfy the second assumption listed above.

Finally, our intended applications listed in chapter 1 require an efficient, small-memory-

footprint solution to cough detection. Many methods have either prohibitive computational

costs or memory requirements that far exceed the limits imposed by modern embedded

systems. Solutions to address these issues range from limiting the expressiveness of a model

through architectural design constraints, to altering the nature of a computation by, for

example, approximating coefficients with lower precision numeric types thereby saving on

both memory and computational resources.

In this dissertation, we will explore the design space of cough processing algorithms

along the axis of application-specific feature design versus deep learning. In particular, we

will investigate the benefits and disadvantages of using deep learning based techniques to

perform this kind of auditory analysis. We begin by creating a “baseline” algorithm. This

algorithm is designed to mimic previous work so as to give us an idea of what algorithms

similar to those previously published would attain on our datasets. We then show the naive

application of deep learning to our problem space, identify issues with this approach and

return with a more targeted application of deep learning that performs much better.
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3.3 Dataset Loading

Previous work in this space has utilized a wide variety of feature-space transformations

including LPC, LSP, MFCCs and simple energy-based measures. Sections 3.4 and 3.5.1 will

show comparisons between the performances of these different features with various learning

models. We detail here the data loading pipeline that is common across all features, so as

to minimize differences between model and feature types when comparing approaches.

The data recordings being analyzed and learnt from within this dissertation are multiple-

hour long audio recordings that have been annotated with cough event locations. For all

model training, the input dataset (unless otherwise specified, this is the combination of the

clinical and ambulatory data collections) was partitioned by participant and randomly split

into 5 folds, one of which was set aside to be used as the test set to measure model accuracy.

This was done so as to ensure that cough sounds from a participant are not found within

both the training and testing sets. This mimics a deployment scenario, where all data being

classified is from participants that the model did not train on. The traditional signal pro-

cessing and machine learning data loading methodology would be to collate time windows

that are interesting into a matrix of feature vectors, then perform machine learning upon

that matrix. This works well on machine learning methods that operate until convergence

upon a dataset small enough to be held within memory all at once, such as is typical with

random forests, support vector machines, etc... This does not work as well with deep learn-

ing methods, as the iterative learning loop is made more explicit for the machine learning

researcher, and as such it has become common practice to not simply iterate over the same

data points over and over, but to instead introduce data augmentation techniques such as

adding random noise to training data, randomly permuting the order in which samples are

drawn from underlying distributions, and to in general add as much variation into training

data as is possible to increase generalizability of the learned model.

To strike a middle ground between these two philosophies, we build an abstraction that

grabs random windows of time from the dataset that are guaranteed to overlap at least one
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Figure 3.1: Diagram of the feature calculation process. Cough events are annotated within a

large audio file, windows of temporal data are taken, split into overlapping frames, then each

frame is passed through a feature calculation routine. The “random cough” data selector

chooses windows that are guaranteed to contain cough annotations, whereas the “random

non-cough” data selector chooses windows at random.

cough event, and add small amounts of noise to them. We refer to this as the “random

cough” data selection process. We also build an abstraction that grabs windows completely

at random, which will contain silence, fan noise, human speech, etc... We refer to this as

the “random non-cough” data selection process. In this dissertation, the windows of time

extracted are of length 200ms, and each window is then broken up into frames of 20ms length

with 50% overlap, resulting in a collection of 19 separate 20ms-long frames per window.

When streaming a file through a classification algorithm, 100 such windows will be classified

per second as the earliest frame is discarded and a new frame is appended to the end of the

window, shifting it forward 10ms in time. These frames are then individually passed through

the chosen feature preprocessing steps. This is shown graphically in Figure 3.1, where an



32

annotated audio file is shown at the top of the figure, with cough annotations depicted in red.

In the bottom left, an extracted time window is shown that contains a cough annotation.

The time window is sliced up into overlapping frames, which are then transformed by the

gammatone filterbank transformation and depicted in a time-frequency representation on

the bottom right of Figure 3.1.

When training a traditional machine learning algorithm, a feature matrix is collected to

contain 5N samples from the “random cough” data selection process, and 5N samples from

the “random non-cough” data selection process, where N is the number of unique cough

sounds held within the training set. When training a neural network, the explicitly iterative

training process (as given in Algorithm 1) makes it simple and natural to constantly sample

new random cough and non-cough samples, and so each minibatch of new data fed into

the network for training is comprised of half “random cough” samples and half “random

non-cough” samples. This results in a training dataset balanced between cough samples and

non-cough samples, avoiding the highly imbalanced classes that would occur if the entire

dataset were naively used for training. When testing a model, the entire test set is used for

validation, and so all performance numbers are indicative of model performance on whole

recordings, not on randomly sampled windows of time.

The neural network training loop naturally revisits every cough sound multiple times

as it works towards model convergence. This is not explicitly determined, but is implicit

in the random sampling of cough sounds used when assembling each minibatch of data for

the network to train upon. Using the scheme described above, traditional machine learning

methods receive a limited amount of the randomized and augmented data benefits that the

neural network training scheme provides. In this dissertation, a value of 5N was chosen as

a good balancing point, considering training memory and computational requirements (This

implies that each cough sound is represented 5 times on average within the training dataset,

with each separate instance augmented separately).
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3.4 Feature Preprocessing

We evaluated a number of different feature-space transformations including linear predictive

coding (LPC) [52], line spectral pairs (LSP) [33, 50], Mel-frequency cepstral coefficients

(MFCC) [23], outputs of a gammatone filterbank (GTFB) [51] as well as the raw short-

time Fourier transform (STFT). These transformations represent a variety of different ways

of decomposing a signal that contains information inherent in oscillations, reverberations,

and other physical phenomena. This feature extraction is a critical step to ensure that the

machine learning models converge stably and quickly. Without this dimensionality reduction,

the number of parameters that must be learned through back-propagation would far outstrip

the amount of data available to train on.

The very act of dimensionality reduction through feature extraction implies that there is

an assumption being made regarding the nature of the signal being processed. These feature

choices, both within this dissertation and in related work, show the assumptions being made

by the feature designer: that a prominent feature of cough sounds may be linear correlation

between time samples imposed by the vocal tract’s filtering of the lung’s exhalation sound

(LPC, LSP), or perhaps the energy distribution across frequency and time (GTFB, STFT).

While we performed a search across feature choices for comparison purposes in the baseline

algorithm evaluation in section 3.5.1, for all further work we chose to use GTFB features as

the basis for our later algorithms.

The GTFB provides a signal representation that offers locality; information from a single

physical phenomenon (such as a cough, a door slamming, etc...) will be “localized” within

the time-frequency distribution, according to the manner in which the sound was gener-

ated. This provides a natural fit for the convolutional networks discussed within section

2.4.3, as the property of locality, combined with the dimensionality reduction of a dyadic

filterbank yields a signal representation that can then be fed into CNNs very easily. Signal

processing literature is littered with cases where dyadic filterbanks provide signal compres-

sion advantages, from the mathematical basis of Wavelets [22] to the empirically-determined
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Figure 3.2: Examples of cough signals visualized using the gammatone filterbank (GTFB)

spectro-temporal decomposition. Lighter colors indicate higher signal energy within a time-

frequency bin.

nonuniform spacing of the Mel frequency scale [23]. It is hypothesized that dyadic filter-

banks work well with natural signals such as the human voice due to how these signals are

generated. Assuming a sum-of-products signal model where there is an internal excitation

that contains some sort of carrier signal which is then modulated by the vocal tract, there

arises a natural relationship between absolute frequency and the bandwidth of a particular

carrier’s energy within the time-frequency space. This natural relationship lends itself well to

analysis through dyadic filterbanks. Cough signals do not contain strongly-defined carriers

per se, however as wideband signals with large swaths of high frequency content coupled

with lower frequency components due to occasional voicing and rattling of the pulmonary

system, this signal decomposition still works well. Spectral techniques such as MFCCs do not

maintain locality in the same way as techniques such as the STFT and GTFB, and as such

do not perform as well when classified upon with CNNs. Raw STFTs, on the other hand, do

not perform the dimensionality reduction needed to create the efficient, low-parameter-count

model to satisfy the design requirements listed in chapter 1.

An example output of the GTFB is shown in Figure 3.2, with two example coughs visu-

alized within the spectro-temporal plane. Lighter colors signify greater energy concentration
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within a particular time-frequency bin. As shown in Figure 3.2 regions of interest can be

clearly identified as large, coherent “blobs” in frequency and time.

The first step of our signal processing pipeline is therefore set to be:

X[i] = F
(
x

[
iK

2
:

(i+ 2)K

2

]
· h
)

X̂[i] = WX[i] (3.1)

x ∈ RN , h ∈ RK , W ∈ RK×L

Where x[i] represents the raw input time signal at time point i, X[i] represents a spectral

slice of x, X̂ represents the output features, x[start : end] represents the sub-sequence of

x starting at start and ending at end and F is the Fourier transform operator. K is the

length of a single “frame” of audio (in this dissertation, this is always 20 milliseconds), L is

the number of filters within the GTFB filterbank, and W represents the coefficients of that

filterbank, mapping from a Fourier transform output of length K to the filterbank output

of length L. As a concrete example, in this dissertation, all data files are audio recordings

sampled at 48 KHz, with a frame length K of 960 samples, and a filterbank size L of 24.

The frequency response for a 24-length filterbank is visualized in Figure 3.4.

3.5 Detection Algorithm

In this section we first compare against baseline algorithms, then introduce our own novel

cough detection algorithm based on recent advancements of convolutional neural networks,

fulfilling one part of the research outcomes listed in section 1.2.

3.5.1 Baseline Models

Previous cough detection work generally centers around chopping the input signal up into

frames of audio, which are each passed through a feature-space transformation. Transformed

frames are then concatenated into a feature vector and passed into a machine learning algo-

rithm which is trained to determine the proper class (e.g. cough vs. non-cough) from that
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Figure 3.3: Frequency responses of 24-length gammatone filterbank outputs

feature vector. There are a wide range of feature-space transformations and machine learn-

ing algorithms used in previous work. So as to faithfully illustrate the differences between

these variations, in our baseline algorithm we train models upon the MFCC [23], LSP [33]

and GTFB [51] feature-space transformations using the K-nearest neighbors [21], support

vector machines [29] and random forests [13] machine learning algorithms. This spread of

algorithms gives us a solid foundation to be able to compare our later algorithms against the

families of previous work, and also gives us an intuition on which pieces of information may

be useful within the signal. Simplified results are given in Table 3.5.1, showing the accuracies

at a 90% true positive rate for different pairings of learning algorithms and feature choices.

We note here first that we do not report results for simply classifying upon the raw

STFT. This is due to the extremely large dimensionality of the STFT; while there are
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kNN [21] RF [13] SVM [29]

LSP [33] Accuracy: 50.8% Accuracy: 68.7% Accuracy: 60.5%

MFCC [23] Accuracy: 89.7% Accuracy: 72.6% Accuracy: 88.8%

GTFB [51] Accuracy: 69.7% Accuracy: 90.1% Accuracy: 87.6%

Table 3.2: Simplified results for the baseline algorithm

many ways to reduce that dimensionality, we choose the GTFB as the representative STFT

dimensionality reduction technique. We also do not classify upon LPC coefficients directly,

instead transforming to LSP before classification. This is mainly to save space; the LPC

results are very similar to the LSP results and so we omit them.

Overall, the best performing of the baseline algorithms displayed here was GTFB features

combined with a random forests classifier, achieving an overall accuracy of 90.1% at a true

positive rate of 90%, as shown in table 3.5.1. Other learning algorithms combined with the

GTFB and MFCC features achieved similar if slightly worse performances, with k nearest

neighbors and MFCCs taking second place with an accuracy of 89.7% and support vector

machines on MFCCs taking third place with an accuracy of 88.8%. Of particular note is that

line spectral pairs seem to do extremely poorly, especially when compared to previous work.

After some analysis, this is due to the fact that we are not instituting any kind of energetic

filter upon the incoming signal. Previous work would only classify signals of sufficient energy,

automatically rejecting signals that failed to reach a certain loudness threshold. In this

work, we sample truly randomly from our dataset, which includes many instances of noise

and silence. These additional periods cause a large perturbation within the LSP signal

domain, which causes the classification task to become much more difficult, and so all three

classification methods fail to learn on the LSP dataset, despite an aggressive hyperparameter

search. We further note that including an energy coefficient alongside the LSP coefficients

was insufficient to aid the learning algorithms. Eliminating quiet sections from the dataset

did work however, allowing the SVM and random forests learning techniques to achieve
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Figure 3.4: Receiver Operating Characteristic curves for all baseline methods. In top left; all methods are compared,

in the other three plots the same methods are separated out by learning method. Color indicates learning method,

line style indicates featurespace transformation.
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overall accuracies of around 80% on those altered datasets. As these energy-thresholded

LSP results are not directly comparable to our later algorithms and are not the best of all

baseline algorithms, we will not discuss them further.

Figure 3.5.1 shows ROC curves for all baseline methods, with color encoding learning

method, and line style encoding featurespace transformation choice. In the top left is shown

all methods compared to eachother, then each learning method is split out into a separate

plot in the other three quadrants of the figure. These results are slightly worse than those

reported in the literature we are comparing against, however as our dataset is challenging

and large, we consider these results reasonable and a good baseline to compare against.

3.5.2 Multilayer Perceptron Model

As a first attempt at applying deep learning to this problem, we employ the simplest neural

network architecture available as a classifier; the multilayer perceptron. This model performs

affine transformations upon the input, passing the result through a nonlinearity between each

affine transformation, working its way down from the input dimensionality to an output rank

of two. Similar to the architecture shown in Figure 2.4, the MLP classifier uses three layers,

linearly decreasing in size from the input dimensionality (in the case of GTFB and MFCC

features 456, in the case of LSP features 247) to output dimensionality (2). Between each

layer is placed a LeakyReLU [44] nonlinearity with α = 0.1. The two output neurons are

fed through a softmax [40] activation function to transform arbitrary outputs into proper

probabilities, and the two outputs are then taken to be cough vs. non-cough probabilities.

ROC curves for the MLP model paired with the MFCC, GTFB and LSP feature transfor-

mations are given in Figure 3.5.2. The accuracies for these three feature transformations at

a true positive rate of 90% were found to be 45.1%, 80.5% and 76.8%, respectively. These

models do not compare very favorably with the baseline models. This is most likely due

to the fact that a three-layer multilayer perceptron does not have much ability to fit highly

nonlinear functions. As described in section 2.4, the main contribution of deep learning to

the machine learning field is the ability to stack multiple simple nonlinearities on top of each



40

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

GTFB MLP AUC: 0.90
GTFB RF AUC: 0.96
LSP MLP AUC: 0.88
MFCC MLP AUC: 0.47

Figure 3.5: Receiver Operating Characteristic curve for a multilayer perceptron classifier

paired with the MFCC, GTFB and LSP feature transformations. The best baseline method

is plotted as well, for comparison.

other to learn highly nonlinear functions. This is limited by the tension between the depth of

the model (as depth increases, the ability for the model to fit arbitrarily nonlinear functions

increases) and the number of parameters within the model (as the number of parameters

increases, the amount of data necessary to converge to a stable model also increases).

The layer sizes of the GTFB model step down from 456 to 305, to 13, to 2, resulting

in a total number of parameters of 186511. This is a large number of parameters for

a dataset containing less than 5000 cough samples, and although multiple coefficients are

produced from each cough sample, and the cough samples themselves are augmented through

the addition of noise and random shifting, these models still must make aggressive use of
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dropout and weight regularization in order to avoid overfitting. In the end, adding further

layers onto the MLP does not help much as the model begins to overfit drastically, and the

model flounders in its lack of data. To build deeper models and thereby learn the nonlinear

function that maps from featurespace representation to cough detector, we will need to

change the fundamental architecture of our model.

3.5.3 Convolutional Model

Multilayer perceptrons, while quite effective, are extremely data-hungry, as their parameter

counts explode quadratically with the rank of the input feature vector. For this reason, we

decided to investigate models with lower parameter counts that could more readily reap the

benefits of the stacked nonlinearities of a deep learning model. Encouraged by the GTFB

results, which have given promising results for MLP, random forests and SVM classifiers, we

exploited the locality inherent in cough sounds when represented in time-frequency distribu-

tions by learning a convolutional model off of the outputs of the GTFB.

After feature preprocessing, the input to the machine learning model can be viewed as

an image with a single channel, the result of applying the gammatone filterbank to the input

audio data, broken up into overlapping time frames. An example of this decomposition is

shown in Figure 3.2, where two exemplary cough signals are shown side-by-side with color

mapping the energy at each point in time and frequency. Note that the cough “event”

manifests itself as a “blob”, which is the technical term for a localized event in the time-

frequency domain.

Convolutional networks can be stacked on top of each other to find larger and more

complex patterns within data. We employ stacks of batch normalization [31] (BN), Convo-

lutional neural network (CNN) and LeakyReLU (LReLU) [44] layers to create “blocks” of

convolutional kernels. Each block contains three consecutive sequences of a BN-CNN-LReLU

layer grouping. We separate these blocks with max pooling layers to reduce data dimension-

ality, culminating in a global average pooling layer [42] and a final fully connected layer

with softmax activation to output probabilities for the two classes (cough vs. non-cough).



42

Layer Output Shape Parameters Runtime

Feature preprocessing (GTFB) 24× 19× 1 0 (0.0%) 36.9ms (13.4%)

3x BN-CNN-LReLU 24× 19× 8 1316 (26.2%) 153.2ms (55.6%)

Max Pooling 12× 9× 8 0 (0.0%) 4.7ms (1.7%)

3x BN-CNN-LReLU 12× 9× 8 1848 (36.7%) 64.3ms (23.3%)

Max Pooling 6× 4× 8 0 (0.0%) 1.0ms (0.4%)

3x BN-CNN-LReLU 6× 4× 8 1848 (36.7%) 15.2ms (5.5%)

Global Average Pooling 1× 1× 8 0 (0.0%) 0.2ms (0.1%)

Fully Connected 2 18 (0.0%) 0.1ms (0.0%)

Total 5030 275.6ms

Table 3.3: The cough detection model architecture, with learned parameter distribution and

runtimes measured per-layer. All runtimes measured on a Raspberry Pi 3 B+, using a batch

size of 100, equal to processing a full second of audio at once.

Throughout the network, all convolutional layers output eight channels, and all kernel sizes

are 3× 3.

Our models have been designed from the ground-up for usage in embedded processing

environments, with low computational resources required and an emphasis on models that

can be deployed onto resource constrained devices. Table 3.5.3 gives detection model timings

as measured on a Raspberry Pi 3 B+. The timings were calculated using the built-in profiling

mechanisms of MXNet [16]. Feature preprocessing and the first convolutional block account

for the majority of the runtime requirements, adding up to nearly 70% of the total CPU

time used per batch. The numbers reported in Table 3.5.3 are representative of calculations

with a batch size of 100, which corresponds to processing a full second of audio at once.
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Figure 3.6: Detection performance for the convolutional model operating upon GTFB fea-

tures. Left; Instantaneous Receiver Operating Characteristic curve. Right; False alarm

curve.

This reduces library overhead to less than 1% of total runtime and is a realistic latency

target for all applications considered within this dissertation. We highlight the low memory

requirements of the trained detection model: The model consists of 12504 static parameters,

(including, for example, GTFB values) and 5030 learned model parameters, yielding a total

model memory footprint of approximately 70 kB. Peak memory usage by the model during

classification with a batch size of 100 remains less than 1.5 MB, easily fitting within even

the smallest embedded DSP platforms. This is in strong contrast to many previous works

that depend on machine learning models such as random forests or support vector machines,

which routinely require much more memory than is available in embedded devices.

Figure 3.5.3 shows an ROC curve displaying the convolutional model’s performance. The

accuracy of the model was found to be 93.2%, achieving a false positive rate of less than

3.5% for a 90% true positive rate. This performance is calculated by running the full

recordings of all files within the test set through the model and comparing to the ground

truth annotations, meaning that for the purposes of evaluation, in this case the true negative

condition outweighs the true positive condition by over 300×.
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Figure 3.7: Detection performance for all three convolutional models operating upon GTFB

features with varying levels of backpropagation learning allowed to change the GTFB calcu-

lation matrix. Right subplot is a zoomed version of Left.

3.5.4 Pushing Backpropagation Further Back

In our quest to use the tools of deep learning in ever greater ways, we pushed the concept

of backpropagation back even farther toward the raw audio input. We represented the

gammatone filterbank as a learnable matrix multiplication off of input Fourier transform

magnitudes. Represented this way, the GTFB transform is merely a 24 × 481 real-valued

matrix, (for 24 output filters, assuming a time frame length of 960 samples, and that only

the positive Fourier coefficients are used). We performed two experiments, first seeding this

spectral transformation matrix with GTFB values, then allowing backpropagation to tweak

the values. Second, initializing the matrix with random values just like all other portions

of the network. In both cases, this extra 24 × 481 set of parameters is learned as a shared

weight applied to each incoming frame of audio to generate the temporal-spectral “image”

that is fed into the convolutional network.

Results for both of these experiments are given as ROC curves in Figure 3.5.4. The figure

shows that the ability to subtly change the GTFB matrix affords the “tweaked” model the

ability to eke out a few more percentage points of accuracy. The overall changes made to the



45

100 200 300 400
Frequency (bins)

0.0

0.2

0.4

0.6

0.8

M
ag

ni
tu
de

y1
y2

0 20 40 60 80 100
Frequency (bins)

0.00

0.05

0.10

0.15

0.20

M
ag

ni
tu
de

y1
y2

Figure 3.8: Left; GTFB filter and tweaked version plotted on top of each other. Right; the

same, but zoomed into the lower-frequency portions.

filterbank are extremely minor, overall less than 1.5% deviation from the original filterbank.

Figure 3.5.4 shows the filter deviations for a single exemplary filterbank. We note that most

of the filter deviations seem to show lower frequencies being introduced into higher frequency

bands, which seems to indicate that the model is finding correlations between low and high

frequencies in cough sounds. This runs somewhat counter to the “localization” arguments

espoused in section 3.5.3, leading us to grudgingly accept that nature rarely makes things

easy. The reality of low and high frequency correlation is causing the filterbank abstraction

to break down slightly here, however due to our introduction of backpropagation in even this

portion of the network, it appears that the model is capable of dealing with this.

For the “randomized” GTFB filterbank (not really a gammatone filterbank at all, but

merely a random matrix that is used to transform the spectral magnitudes fed into the

network) there are unfortunately no simple answers as to what is learned. The “filters” within

the filterbank are, to our eyes, very similar to the gaussian noise that they were initialized

with. The network, however, is able to learn patterns within this data, as shown in Figure

3.5.4. In an effort to understand what these randomized filters are learning, we visualized a

“spectrogram” similar to what is shown in Figure 3.2. The result is shown in Figure 3.5.4,
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Figure 3.9: Left; GTFB spectrogram of a cough sample. Right; randomized GTFB spectro-

gram of the same cough sample.

where a cough sample is shown transformed through the typical GTFB transform resulting

in a “GTFB spectrogram”, and this is juxtaposed against the “spectrogram” that is the

result of running that same cough sample through the randomized matrix after training it

on cough samples. We note that the matrix does seem to have some concept of frequency

locality; it has not completely scrambled the spectral energy, which forms the basis for the

convolutional kernels to be able to find patterns within these images. Regardless, this model

does not perform nearly as well as the vanilla GTFB or tweaked GTFB models, and so it will

be ignored for now until future work can investigate methods of coercing this model toward

even greater efficacy.

3.5.5 Introducing Frequency Variance

The astute reader may notice that while the fundamental proposition of a convolutional

neural network is learning of shift-invariant probability distributions, our signals are only

truly shift invariant along the time axis. There is no reason why frequency shift invariance

should be considered a necessary property of the system, however eliminating it will increase

the parameter count somewhat, decreasing the ratio of parameters to training examples.
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Figure 3.10: Diagram of a frequency-variant convolutional neural network (FV-CNN), graph-

ically depicting a convolution between a 3-channel input tensor and (for convenience) two

different convolutional kernels in red. The convolutional kernels are shifted across the time

dimension of the input tensor, with domain and range denoted by the dashed lines. A sep-

arate convolutional kernel will be used for the next row of frequency down, and a separate

convolutional kernel will be used for the next row after that, continuing until all input data

is mapped to an output. The generated output plane of pixels is shown in blue.

This is because the probability distribution that the model must learn is now predicated

on frequency, and thus instead of learning one 3 × 3 probability distribution that is shifted

across all of time and frequency, it now must learn N 3 × 3 probability distributions that

are each shifted across time only, where N is the number of filters within the gammatone

filterbank. This is visualized in Figure 3.10, showing how the convolutional kernels shift only

in time, and a separate kernel is used for each slice of frequency. This formulation increases

the number of parameters of the model from 5030 up to 63948, an increase of just over

12×.

This increase in parameters gives the model slightly more flexibility at the cost of requiring

more training data to converge to a stable result. When trained upon the dataset in the

same way as our other convolutional models, we find that the performance of a frequency-

variant convolutional model is able to match that of the frequency-invariant model with
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Figure 3.11: Detection performance of frequency-variant models in red, compared against

all three non-frequency-variant convolutional models in black. Right subplot is a zoomed

version of Left.

tweaked GTFB filters. Allowing backpropagation to tweak the GTFB filterbanks for this

frequency-variant convolutional model did not increase accuracy but rather hindered it. We

hypothesize this is due to the parameter count (now up to 74892) beginning to eclipse the

amount of training data available. The results for both of these experiments are shown as

ROC curves in Figure 3.5.5, with black denoting frequency-invariant models, red denoting

frequency-variant models, and line texture denoting how the featurespace transformation

was learned (if at all).

Our interpretation of these results is that the restriction of convolutional kernels to a

single location in frequency allows the kernels learned in low frequencies to differ from those

learned in high frequencies, which turns out to be a competitive advantage. We experimented

with both 3×3 kernels (results shown in Figure 3.5.5) as well as 3×1 kernels (patterns across

time only, not in frequency; results not shown). We found that a 3 × 1 kernel was insuffi-

cient for proper learning; e.g. it is truly necessary to learn joint time-frequency probability

distributions, and the best results were found when those joint time-frequency probability

distributions were further conditioned on absolute frequency. Inspecting the changes the
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backpropagation algorithm made to the filters when allowed to tweak them showed that the

changes were similar to those made when using a frequency-invariant model: high frequuency

bands began to couple in small, unpredictable ways with lower frequency bands.

3.5.6 Temporal Smoothing/Segmentation

The results in sections 3.5.3 and 3.5.4 refer only to instantaneous detection accuracy. There

is no concept of context or temporal information beyond the 19 frames of data extending

out to either side, and as with any instantaneous estimator, its noisyness through time can

be greatly improved upon through temporal smoothing. We evaluated two methods for this;

a simple median filter applied to the classification outputs, and a simple recurrent neural

network composed of stacked gated recurrent units [17] applied to the same outputs. In all

cases, the median filter was found to outperform the recurrent neural networks, and so we will

refrain from delving deeper into the results in this dissertation. We do wish to note that the

recurrent neural networks were not significantly worse than the median filter, and that they

were not trained jointly with the convolutional model. We hypothesize that one direction for

future work is to investigate whether jointly training the recurrent neural network on top of

the convolutional detection model (rather than simply training the recurrent neural network

on the static outputs of a previously-run detection model) would increase performance.

We used a median filter of length 9 to smooth contiguous detection results and ensure

that noisy estimators did not generate spurious coughs in the presence of noise. We took this

smoothed output and coalesced contiguous classification results into discrete cough events.

These cough events were then directly compared to the ground truth annotations, with

a single overlapping classification counted as a true positive, any other kind of detection

(completely non-overlapping with a ground truth annotation, or multiple overlapping classi-

fications) as a false positive. The lack of any kind of overlapping detected cough event for a

ground truth annotation was taken as a false negative, and we did not track true negatives.

These event detection rules form the basis for our analysis on “false alarms per hour”, where

this metric simply reports the number of false positive cough events per hour of recording.
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Figure 3.12: Left; False alarm curves for the convolutional model operating upon GTFB

features and tweaked GTFB features. Right; False alarm curve after median filtering.

Using this methodology, we were able to obtain an 80% true positive rate with less than 10

false alarms per hour, as measured on our testing dataset. This is shown in the right-hand

side of Figure 3.5.6.

3.5.7 End-to-End Deep Learning Models

To complete the effort of pushing the deep learning paradigm ever further, we attempted

to completely rid ourselves of a feature preprocessing step at all, and use an end-to-end

deep learning pipeline, where every operation, from raw input signal to finished classification

probabilities is differentiable and learned. While our previous experiments were met with

some success, this level of deep learning was found to avoid convergence very reliably. In

particular, the densely packed nature of temporal data requires extremely large amounts

of training data, far beyond what we have been able to collect in this dissertation work.

A promising direction of future work is to apply transfer learning to a pretrained auditory

model (such as WaveNet [49]) to bend its audio-processing abilities towards cough sound

analysis and see if it is able to improve upon the fundamental assumptions made when we

chose to use the GTFB as our signal representation.
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3.6 Cough Classification

A primary research outcome of this dissertation is to answer the question of whether infor-

mation about cough sounds can be extracted in such a way as to enable automatic cough

classification based upon disease. Through a collaboration with the Gates Foundation and

the Desmond Tutu HIV Centre in South Africa, we have access to a dataset of cough sounds

that contain many coughs from patients diagnosed with tuberculosis. We build a cough

classification model and analyze the results for accuracy. Runtime performance is less of a

concern for cough classification as the model need only be evaluated once a cough event has

been known to occur. As the architecture of the cough classification model is very similar

to the architecture of the cough detection model however, the runtime performance is very

good.

3.6.1 Cough Classification Model

The classification model for classifying coughs into tuberculosis vs. control coughs is ex-

tremely similar to the detection network. The differences are that the feature preprocessing

stage generates 32 filterbank outputs instead of 24, the network contains 4 stacked blocks

of convolutions rather than 3, and each convolutional layer generates 6 channels instead of

8. These changes, while relatively minor, allow the classification network greater latitude in

building complex patterns out of the stacks of convolutional kernels. This in turn signifi-

cantly boosts the classification accuracy while effecting a relatively minor impact on runtime

performance without increasing the number of parameters significantly. We note that the

runtime of this model is similar to that of the detection model; however, as runtime is rarely

a concern for classification models we will forgo any analysis of our cough classification model

performance.

As mentioned in Section 3.1, the datasets for cough classification are highly imbalanced;

due to differences across the datasets, it is necessary to take steps to prevent the classification

model from simply learning the difference between the clinical and ambulatory datasets
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rather than learning the difference between a tuberculosis cough and a control cough. To do

this, we employ a Discriminative Adversarial Network (DAN) to take the outputs of the first

convolutional “block”, and attempt to classify the input data sample as either stemming

from the clinical dataset or the ambulatory dataset. This is shown graphically in Figure

4.1, with the typical convolutional network classifying what type of cough was input, and a

second DAN classifying the dataset from which the cough originated. The DAN takes the

form of a 3-layer multilayer perceptron with linearly decreasing layer sizes and LeakyReLU

activations between layers. The last layer feeds into a softmax activation that predicts the

dataset for the given input cough samples. The ability of the DAN to correctly classify an

input data sample is then pitted against the ability of the main network to classify an input

cough. The network loss L is therefore a function of both the classifier network loss LC , and

the discriminator loss LD as shown in the training procedure given in Algorithm 2. This

addition of a second network suppresses the ability of the classification network to extract

features that distinguish one dataset from the other, forcing it to instead rely on patterns

that are present in both datasets. For more information on DANs, see chapter 4

3.6.2 Classification Results

As mentioned previously, the dataset our models are trained upon (summarized in table 3.1)

is bifurcated; half of the data comes from a clinical setting, whereas the other half comes from

an ambulatory setting. Additionally, all tuberculosis data comes from the clinical dataset,

however very little of the non-tuberculosis data comes from the clinical dataset. This presents

a difficult problem to the machine learning optimizer: if trained upon only clinical data it is

able to learn, however with so few non-tuberculosis (referred to as control) cough samples, it

is unable to learn a very good classifier, and if tested upon data from outside of the clinic, it

performs very badly. These two conditions can be seen in the Figure 3.6.2, in the Clinical on

Clinical and Clinical on Both conditions. It is painfully obvious that the Clinical on Both

results show a detector that has learned from a very disproportionate population, and as

such is classifying many more patients as having tuberculosis than should be the case.
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Figure 3.13: Receiver Operating Characteristic curve for the classification model in four

different conditions: Trained on clinical data and tested on clinical data, trained on clinical

data and tested on both datasets, trained on both datasets and tested on both datasets, and

finally trained on both datasets but tested on only clinical data.

To remedy this, we attempt to introduce the ambulatory dataset’s cough samples into

the training set, however this presents the machine learning model with an easy escape. The

model can simply classify all samples from the clinical dataset as tuberculosis samples, and

thereby avoid having to learn how to differentiate cough sounds, but rather learn how to

differentiate which data collection site a sample came from. This is a perfect situation in

which to use a DAN, to use adversarial networks to filter out the information that could be

used to learn to discriminate dataset provenance.

We applied a DAN to our model as shown in Figure 4.1, and used it to suppress dataset

provenance information within the cough samples. This allowed our model to train upon both

datasets, greatly increasing the model’s ability to detect a control cough without harming its
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ability to detect a tuberculosis cough. In particular, in Figure 3.6.2, the Both on Both line

shows the performance of a model trained on both datasets and then tested on both, which

does quite well, however the true test is to take that model and test it only on clinical data to

prove that it is not, in fact, simply predicting tuberculosis for all samples within the clinical

dataset. As can be seen by the Both on Clinical condition in 3.6.2, this is not the case.

We can therefore be certain that our model has learned more about what non-tuberculosis

coughs sound like, without harming its conception of what a tuberculosis cough sounds like.

A current state-of-the-art sputum testing system called the Gene Xpert is used in clinics

worldwide to screen for tuberculosis in patients already identified to have some kind of

pulmonary ailment. The sputum test requires the patient to cough up a sample of sputum

and insert it into the machine for genetic testing. This process is time consuming and the

machine itself is expensive. When tested by a third party, the Gene Xpert was found to

achieve a sensitivity of 52% with a sensitivity of 95% [48]. We hypothesize that this cough

system could therefore be used as an initial screening tool to catch users with tuberculosis in

low-resource clinics that cannot afford a Gene Xpert machine (which retails for over $17,000

USD as of the time of this writing) before flagging the patients for further testing.

We note here that a tuberculosis cough tends to be quite “wet”, often producing sputum in

vast quantities. To contrast tuberculosis coughs with those in our control group, the majority

of all non-tuberculosis cough sounds are “dry”, however a large minority of the control

coughs were also wet due to preexisting conditions. Additionally, not all tuberculosis coughs

captured within the dataset were wet. We unfortunately do not have ground truth data

on which coughs were wet and which were dry across both tuberculosis and control coughs;

it would be illuminating to determine how correlated the tuberculosis cough classification

model’s output is with the ground truth labels of coughs based on wetness. A promising

direction of future work is to collect further datasets of mixed coughs for other pulmonary

ailments with distinctive cough sounds and to integrate those with these two datasets to verify

that the models are able to learn subtle differences in coughs beyond simply “tuberculosis”

versus “non-tuberculosis”, as these models have.
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Chapter 4

DISCRIMINATIVE ADVERSARIAL NETWORKS

In this chapter, we will briefly describe a new application of transfer learning toward

the problem of dataset imbalance. This application is dubbed a “discriminative adversarial

network” and addresses concerns against model overfitting in networks trained on disparate

datasets. This fulfills one part of the research outcomes listed in section 1.2.

4.1 Dataset Imbalance

Many machine learning algorithms are not guaranteed to be globally optimal; they employ

stochastic training methods that converge to a local optimum, but there is no guarantee that

the converged to values are the best possible values for that model. Neural networks are a

conspicuous member of this class of algorithms, convergence to suboptimal results is not a

rare occurrence when training deep neural networks, and techniques to work around these

issues abound. One of these techniques is to maintain a balanced dataset. The fundamental

presumption behind stochastic gradient descent (as briefly described in section 2.4) is that

each minibatch that is trained upon (in this dissertation, a minibatch is approximately 64

training samples, although values from 1 to 1024 are common [10]) is representative of the

overall population of the training set. This assumption is an important one, as if a learning

algorithm is given only negative examples for too many iterations, it is natural for the

gradient descent algorithms to begin compromising the performance of the portions of the

network responsible for positive examples.

This can be seen mathematically, as the optimization problem being solved (Equation

2.5, which is shown specialized for a perceptron) is gradient descent, which will always seek

to minimize the loss function as much as possible. The update applied to the weights of the
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model W , which we will refer to as ∂W can therefore be decomposed:

∂W = ∂W+ + ∂W− (4.1)

Where ∂W+ corresponds to the component that would update weights more toward

classifying inputs as a positive class, and ∂W− corresponds to the component that would

update weights more toward classifying inputs as a negative class. This decomposition

is trivially accomplishable by simply performing a forward pass of only positive examples

within a minibatch, calculating the gradients of the model weights with respect to those

outputs, storing those gradients as ∂W+ and doing the same for all negative examples and

storing those gradients as ∂W−. By training on minibatches with representation of both

positive and negative classes, the summation of the two components will update the network

along the shared subspace that the optimization algorithm has deemed is beneficial for the

network across both classes. While it is true that the loss surface being optimized over is

high-dimensional and extremely nonlinear (due to the many nonlinearities imposed by the

depth of the network being optimized), and many local optima will exist, a fundamental

assumption of gradient descent is that the model will, eventually, converge to an optimum

point at which ∂W+ + ∂W− cancel each other out and no more progress can be made. The

benefit to ensuring that both ∂W+ and ∂W− are present in each minibatch is to ensure that

each “step” taken by the optimizer moves along the direction in state space that is actually

desired, whereas taking many steps wholly in the ∂W+ direction, followed by a step wholly

in the ∂W− direction runs the risk of falling into local optima from which it is difficult for

the optimizer to escape. While sufficiently large steps taken by the optimizer are always

able to escape from these local optima that bias strongly toward one class, in practice it is

difficult for the model training loop to detect when this happens and increase the learning

rate η to deal with it.

When datasets are large and balanced (e.g. the number of training examples per class are

roughly equal) simply randomly sampling from the datasets is enough to guarantee rough

balancing of minibatches. This approach does not work for our use cases here, as the nature
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of the data we are working with is that there is over 350× as much non-cough data as there

is cough data (see section 3.1 for a breakdown of the dataset). This led us to design the

minibatch balancing strategy described in section 3.3 that ensures that roughly 1/2 of all

training instances within every minibatch are cough sounds. This successfully addressed the

issue of balance between cough/non-cough examples when training cough detection models.

For our cough classification models however, there exists another sort of imbalance: data

collection site imbalance.

Inspecting table 3.1, it is simple to see that all tuberculosis cough samples come from

the clinical dataset, however the great majority of non-tuberculosis coughs come from the

ambulatory dataset. While balancing non-tuberculosis coughs against tuberculosis coughs

when building a cough classifier is straightforward (we simply sample random coughs from

the two subsets of coughs, as described in section 3.6) there remains a fundamental danger

within our model training that the updates applied to the model weights W will be solely

based upon the data collection site and not the actual cough sound itself. We confirmed

that this is indeed an issue by training classifier networks on the dataset and noting that the

network misclassified every single non-tuberculosis cough sample from the clinical dataset

as a tuberculosis cough. We hypothesize this is because gradient descent is overwhelmed by

the component of the weight gradients that is due to data recording site differences. This

leads the model to learn to tell the difference between data recording sites rather than to

tell the difference between a tuberculosis cough and a non-tuberculosis cough.

Viewed in this manner, the solution is simple: we must disincentivize the gradient descent

algorithm from learning to cue off of the wrong pieces of information. To do so, we must

alter the optimization to pay less attention to gradients common to dataset differences, and

more attention to gradients common to class differences. While, ideally, there would be no

dataset differences and this would not be a problem, the reality is that dataset collection is

difficult, and building more robust learning methods is desirable.



58

Clinical

Ambulatory

TB

Control

Figure 4.1: Cough classification architecture with DAN and CNN architectures visualized.

Along the bottom lies the convolutional classification network that classifies cough type, with

the outputs from the first layer feeding into a multilayer perceptron that classifies dataset

source.

4.2 Applying Adversarial Networks to Dataset Imbalance

The fundamental proposition of adversarial networks is that it is possible to “pit” one network

against another in order to increase performance of the second network. In the case of

generative adversarial networks (GANs) training examples are synthesized by a network

in order to cause misclassification within a second classifier network. We take this same

proposition and bend it toward training models that are “blind” to certain attributes of

signals; in particular we need to reduce the effect that imbalanced datasets have upon model

training.

To do so, in addition to our typical convolutional classification network that seeks to

classify coughs as TB or control, we set up a discriminator network that seeks to classify an

audio recording as clinical or ambulatory. By jointly training both networks, we are able to

learn to classify cough sounds while penalizing the model for being able to distinguish which

dataset a particular sample was collected from. Figure 4.1 shows the adversarial architecture

used in section 3.6 graphically. Along the bottom of the figure is shown the convolutional
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ALGORITHM 2: Classification and DAN training procedure

Input: Sample X with Label Y from dataset S, learning rate ηt, DAN strength parameter λ.

Output: Updated weights WD and WC of discriminator and classifier networks.

Ŷ , Ŝ = Forward(X);

// Update Discriminator

LD = SoftmaxCrossEntropy(S, Ŝ);

∂LD
∂WD

= Backward(LD,WD);

WD
t+1 = UpdateParameters(WD,

∂LD
∂WD

, ηt);

// Update Classifier

LC = SoftmaxCrossEntropy(Y, Ŷ );

L = LC − λLD;

∂L
∂WC

= Backward(L,WC);

WC
t+1 = UpdateParameters(WC ,

∂L
∂WC

, ηt);

classification network, while along the top is shown the discriminative portion of the network.

Of particular note within Figure 4.1 is that there is a small section of the overall network

that is shared between the two classification pipelines. The first block of convolutional layers

(the second row in table 3.5.3) is shared by both networks, and it is within this block of

parameters that the DAN has its effect. Because there are now two networks imposing their

respective gradients upon the weights of the first block of layers, we can decompose the

gradients upon that first layer as follows:

∂W = ∂WTB + ∂WControl + ∂WClinical + ∂WAmbulatory (4.2)

The purpose of a DAN is to learn a TB/control classifier that is able to perform well

while the clinical/ambulatory discriminator is unable to accurately determine the source

dataset of a sample. Algorithm 2 shows the forward/backward propagation recipe to utilize

the DAN alongside a classifier network. In summary, first we pass a minibatch of training

data through the model, resulting in estimates from the classifier network (Ŷ ) and the

discriminator network (Ŝ). The discriminator network then takes a single optimizer step,
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updating the discriminator weights WD, which explicitly do not contain the shared weights

within the first layer. This update allows the discriminator network to improve its ability

to extract information from the output of the first block of layers, attempting to estimate

which data collection site this sample was taken from (symbolized as S within algorithm 2).

Next, the classifier is updated, however it is not simply the loss from the classifier network

(LC) that is used; the loss from the discriminator network (LD) is introduced as well, with a

mixing factor of λ. The set of parameters being updated by this combination of losses (WC)

contains the full classification network, including the shared first block of operations. The

loss from the discriminator network LD will therefore attribute gradients only to that shared

first block. The rest of the classifier network is effectively trained normally; it is only the

gradients of that first block of shared operations that are modified by this training recipe.

Returning our attention to equation 4.2, we are able to rephrase the gradient update of

the first block of operations as:

∂W = ∂W classifier − λW discriminator (4.3)

The purpose of adding the second term to this gradient is to attempt to “cancel out” a

subspace of the weights W . To be concrete: we wish to eliminate the subspace of W that

allows information about which data collection site a sample originated from to flow through

the rest of the network. If the weights W can be made to successfully filter that information

out while still retaining the information necessary to classify a sample as TB or control, then

our optimization process has succeeded. The method by which this is done is to construct

a network that extracts the clinical vs. ambulatory information from the input data. The

gradients being pushed backward through the discriminative network onto the shared first

block represent the network’s best guess as to what filters must be available within that first

block in order to correctly discriminate what data collection site a sample was recorded at.

By multiplying by −λ, the gradients we add on actively suppress the subspaces within the

filters with a tunable strength.



61

4.2.1 A Linear Example

To take a linear example, let us imagine that a fully-connected network is performing a

classification task upon an input vector from a bifurcated dataset similar to the tuberculosis

dataset. There are significant differences between the signals taken from the two datasets;

in this example, let us assume that the previous layers of a processing network (the result

of which we refer to as x) contains a strong marker for dataset provenance. In this example,

we assume that the last element within x when a data instance originates from dataset

collection site A is always very large, whereas the last element from each vector when the

data instance originates from dataset collection site B is always very small. A visualization

of this is given in Figure 4.2, where an example xA and xB (representing input that originates

from from data collection sites A and B, respectively) are shown. The last element of xA

is highlighted in red, showing a very clear marker that can be used to discriminate which

dataset a particular x vector originates from. Let us further imagine that the true classes are

highly correlated with the data collection site; positive examples come from data collection

site A approximately 80% of the time. We concern ourselves with only the last classification

layer, to illustrate how gradients might interact to effect the input x.

Formally, let us take our classification model to be:

ŷ = softmax (Wf(x)) (4.4)

x ∈ R10, W ∈ R2×10

Where x is our input vector, itself an output from upstream layers in the network, ŷ rep-

resents the estimated output class probabilities, softmax(·) is the softmax activation function

for rescaling arbitrary values into proper class probabilities, and W is the matrix of weights

for the linear classifier. For our purposes, we will ignore the softmax(·), and view this as

merely a linear operation, assuming that we know how to backpropagate losses through the

softmax function.

If we take the gradients of W , we can clearly see that ∂W will be be composed of two

separate pieces, the “true” classification gradients that will learn filters to extract information
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Figure 4.2: Example inputs to a linear classifier from two

from the first nine elements of x, and the “false” gradient that comes from that last element

of x:

∂W = ∂W classifier + ∂WAB (4.5)

For the purposes of simplicity, we will assume that these two vectors are entirely orthog-

onal in that the last element of ∂W classifier is zero, and the first nine elements of ∂WAB are

zero. This implies that there is no information within the last element of x that has any

bearing upon the true classification task; it is based upon data collection site (which itself is

highly correlated with the true classification labels). By decomposing the gradients in such

a way, we have an intuitive understanding of what a properly generalized model should do;

ignore the last element of x and pay attention to the subtler patterns within the first nine

elements of x, as the last element of x will be correct only 80% of the time.

The reason this does not happen automatically is simple; the loss function surface that
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gradient descent follows can be dominated by the large values given by that last element of x.

The gradients must be separated and the ∂WAB portion nullified for the learning algorithm

to pay attention only to the “true” information available for classification.

In order to learn this separation of gradients, we will set up a second linear discriminator

network, which we will denote with D, which (in this example) is simply another 10 × 2

matrix that is intended to discriminate which data collection site x came from. In this

example, it is plain to see that the gradients upon the last element of x induced by D will

of course be very large. The gradients upon the last element of x induced by W will also be

large, but in this example they will be (on average) 80% the size of the gradients imposed

by D.

Within this example, we assume that x is the output from a previous layer (in our larger

examples, x would represent the output of the shared first block of convolutional layers).

The purpose of this formulation is to apply gradients upon x to suppress the information

being unwittingly transmitted through x, overwhelming the gradient descent optimizer with

deceptive gradients. By applying the update rule from ??, we subtract out a gradient that

is more fully correlated with the dataset influence than the classifier gradient. In effect, we

are able to isolate the effect of the dataset-correlated independent variable and subtract that

out of the gradients being computed by the classifier.

This is, of course, a simplified view of reality. Exact subtraction does not typically work,

and iterative methods (using λ as a suppression factor) is necessary. The value of λ controls

how much to warp the error surface by subtracting the discriminative loss from the overall

classification loss. In our experiments, we have found this to be tightly coupled with the

relative sizes of the gradients, which is a difficult quantity to foresee. In general, small values

of λ such as 0.1, coupled with a small learning rate have yielded the best results on real-world

datasets such as our cough dataset. A synthetic example is given in 4.3, that shows example

data that, when trained with a DAN, is able to achieve higher accuracy than would otherwise

be possible using naive learning methods.
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4.2.2 Training Considerations

When training a DAN, it is important to avoid several practical pitfalls:

• Mirror-architectures The classifier and discriminator networks should not be exact

copies of eachother. In cases where the classifier and discriminator networks are pre-

dicting the same values 80% of the time, the networks can converge in ways that cause

the gradients to be very similar a large proportion of the time. This in turn causes the

subtraction ∂W classifier − λW discriminator to do nothing but reduce the magnitude of the

update to the weights. This by itself would not be a large problem, however especially

for larger values of λ it is easy to run into machine precision issues.

For these reasons, it is recommended to design the DAN to be of a different style of

architecture than the classifier network. As an example, in Figure 4.1 is demonstrated

a convolutional network that uses a multilayer perceptron-based discriminator. By

architecting it in this way, we have made it much more difficult for the gradients to

align and cause these precision issues.

• Gradient flip-flops As these networks are trained in opposition to each other, (the

discriminator attempts to correctly discern dataset provenance, the classifier’s update

step actively prevents this by changing the weights of the shared network section) it is

entirely possible to observe wildly fluctuating network performance. This is indicative

of a learning rate that is too high. The discriminative network may successfully learn

to take advantage of one manifestation of dataset provenance within the input signal

x, and the classifier’s update step may then over-correct by subtracting too much from

a particular weight. The DAN is then free to simply flip its weights in response, and

the network is left in more or less the same state it was at before. For this reason,

we recommend training with lower learning rates when training a DAN than would

otherwise be used, to allow the discriminative and classification networks to converge

both separately and jointly, with a minimum of oscillation in network state space.
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Figure 4.3: Synthetic data examples used to train a convolutional neural network. 20 × 20

images are generated that contain random patterns with random perturbations. Left; a

“fast” oscillating pattern. Right; a “slow” oscillating pattern.

4.3 A Synthetic Example

To give a synthetic example to better understand the mechanics of discriminative adversarial

networks, we will generate a dataset with what we will call “correlated corruption”. We

generate random images containing a “fast” oscillating pattern or a “slow” oscillating pattern,

along with random perturbations including added noise, skew, and oscillation rate. Examples

of these images are shown in Figure 4.3.

Tightly correlated with the class of the image (e.g. “fast” versus “slow”) is a corruption

that increases the top half of the image by 100, dwarfing the typical perturbations. Figure

4.4 shows a comparison of corrupted and uncorrupted “fast” oscillating patterns. Note that

the dynamic range given by the colorbar on the right of Figure 4.4 is much wider in the

corrupted example.

We setup the data generation such that 80% of all “fast” oscillation instances are cor-

rupted, and 20% of all “slow” oscillation instances are corrupted. This gives us a toy dataset

to experiment with, to evaluate how easily learning algorithms get caught in the local minima

afforded by networks that take advantage of the corruption to win a large reduction in loss.
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Figure 4.4: Left; an uncorrupted “fast” oscillating pattern. Right; a corrupted “fast” oscil-

lating pattern.

We freely admit the inadequacies of this synthetic dataset; the local minima can be avoided

through multiple alternative methods such as using a more intelligent optimizer (ADAM [35]

is able to reliably escape the local minima) or even just low learning rates and a little luck

in initial weight distribution. Regardless, this simple dataset is sufficient to illustrate the

mechanics of discriminative adversarial networks, and so we forge ahead.

4.3.1 Model Setup

We develop a convolutional architecture very similar to our cough classification model, com-

plete with a multilayer perceptron-based discriminator. Table 4.3.1 gives a listing of the

convolutional side of the architecture. Our parameter choices for the convolutional model

are much simpler than the cough classification model. Only 2 channels, a limited number of

convolutional layers, and a reduced input dimensionality all serve to keep the complexity of

the model low for easy experimentation.

Just as in the cough classification architecture shown in Figure 4.1, we attach a multilayer

perceptron to the outputs of the first “block” of convolutional layers. In this synthetic

example, we build a two-layer MLP off of that first block of shared weights, and train it

exactly as specified in 2. Our training hyperparameters are to define one epoch as 1000
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Layer Output Shape Parameters

3x BN-CNN-LReLU 20× 20× 2 106 (37.9%)

Max Pooling 10× 10× 2 0 (0.0%)

2x BN-CNN-LReLU 10× 10× 2 84 (30.0%)

Max Pooling 5× 5× 2 0 (0.0%)

2x BN-CNN-LReLU 5× 5× 2 84 (30.0%)

Global Average Pooling 1× 1× 2 0 (0.0%)

Fully Connected 2 6 (2.1%)

Total 280

Table 4.1: The synthetic DAN evaluation architecture. Very similar to the cough classifica-

tion model, except smaller.

minibatches of size 32, and to train for one epoch with learning rate η = 0.01, and a further

epoch with learning rate η = 0.001.

4.3.2 Synthetic Results

When training the model with λ = 0 (equivalent to a purely convolutional classifier with no

discriminator network at all), we obtain the expected result of classifying at 80% accuracy.

When comparing the network predictions against corrupted/non-corrupted labels instead of

fast/slow oscillation labels, we discover that the network has indeed fallen prey to the large

gradients and local minima imposed by the large corruptions of data. The “accuracy” of the

network’s outputs, when compared to the corrupted/non-corrupted labels is 100%, whereas

the “accuracy” of of the network’s outputs when compared to the true labels is stuck at the

correlation factor of 80%.
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To engage the DAN, we begin increasing the λ parameter so as to warp the cost function

of the network’s classification task. We performed a search over λ values, with smaller values

having no effect (overall network performance being untouched) until λ reached values close

to 0.5, at which point network convergence started to become more erratic. We continued

to raise the λ parameter until we reached a value of 3.0, at which point the network began

to reliably converge to 99.9% accuracy. This consequently means that the accuracy of the

network’s output when compared to the corrupted/non-corrupted labels has dropped to 80%,

as expected. This value of λ is much higher than what was used in the cough classification

work. We hypothesize this is due to the fact that the gradients in the synthetic case are

due to a corruption that is many times larger in magnitude than the signal being analyzed,

whereas in the case of cough classification, the corrupting signal magnitudes are much closer

to equal. In essence, the cost function in this synthetic example requires much more warping

than in the cough classification task.

As this method is attempting to “dodge” local minima, and given that neural networks

are randomly initialized, this solution is similarly stochastic in nature. It is not unusual for

this technique to fail some percentage of the time, although in our experiments good choices

of λ help. This is reminiscent of the struggles that multilayer perceptrons faced before the

advent of Glorot [27] initialization greatly increased the reliability of convergence to a good

minimum. While we have determined some few elements necesasry to increase the likelihood

of convergence, future investigation is needed to determine the ingredients to maximize the

probability of success when training a DAN.

4.4 Expanding DANs to other problems

The basic idea of a discriminative adversarial network as a tool to warp the error function of

a machine learning model is applicable far beyond simply cough sounds or even imbalanced

datasets. It is applicable within any context where information should be stripped out of

a network and that information is available as a part of the “ground truth” annotations

within the dataset. As an example similar to what we have already seen, one could imagine
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a dataset of images collected from patients attempting to classify a health condition from

pictures of their skin. Many confounding factors could exist within this dataset, including

lighting conditions, camera manufacture, motion blur from unsteady data collection, etc...

While such confounding factors could be dealt with through careful experimental design,

perhaps the most important to be robust against would be skin tone. Many deep learning

systems have been shown to be “biased” by choice of dataset and implicit assumptions made

by the researchers designing such systems [14, 36]. DANs are a natural tool for attempting

to fight this kind of bias within deep learning systems. A skin health classification system

that may make mistakes due to the skin tone of the user could be made more resilient against

such issues by building a DAN made to explicitly determine the skin tone of the user. As is

the case with DANs, the gradients from this discriminator would then be used to suppress

any information used to make that classification, such that the primary classifier network

would become less sensitive to such variations in input.

As another example, one could imagine a reinforcement learning system that has a par-

ticularly difficult to control environment, and those environmental factors somehow end up

disrupting or degrading its ability to learn. For instance a self-driving vehicle that learns

to be more cautious around blue vehicles because a large part of its test set had aggressive

drivers that just happened to use a blue sedan. The color of the car should not cause an

autonomous vehicle to change its behavior, and so DANs offer an easy way to turn ground

truth labels (these training recordings contain the aggressive driver) into gradients (these

recordings create these gradients upon the computer vision system) into altered models (this

model is no longer capable of telling the difference between the blue training car and the

red training car). This shows most clearly the power of DANs: to build links between unde-

sirable signal attributes and ground truth labels, which can then be used to suppress those

undesirable signal attributes within later processing stages.
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Chapter 5

CONCLUSION

In conclusion, we have given in this dissertation an overview of cough sound processing

work and proposed novel methods to both make use of domain-specific knowledge as it

can be applied to these signals, as well as explored some applications of deep learning in

pushing these signal processing models beyond what they would otherwise be capable of. In

particular, we investigated the inherent tension between the attraction of using deep learning

and backpropagation to learn ever more complex nonlinear mappings for classification and

detection versus the reality of imperfect and limited datasets and computational power. We

began with a comparison of baseline methods, using a variety of featurespace transformations

and learning methods taken from the relevant related works. We showed that for cough

detection, the best methods clustered together in terms of performance, with two featurespace

transformations (GTFB and MFCC) giving good results. We hypothesized that the limiting

factor was therefore the learning method stacked on top of the featurespace transformation

and so began building neural network models to learn the complex nonlinear relationships

between input features and output cough detection probabilities.

Our first efforts failed to produce real fruit and indeed were much worse than the original

learning methods. We determined that this was due to the fact that our deep learning models

were exploding in learned parameter count and thus limited our viable model depth, due to

the rapidly increasing number of parameters. To combat this, we exploited the locality of the

GTFB transformation, and began applying convolutional networks as a highly parameter-

restricted pattern recognizer. This allowed us to build significantly deeper models, which in

turn enabled the learning system stacked on top of GTFB features to achieve much higher

detection accuracy than the baseline methods. This validated our initial hypothesis that
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the underlying featurespace transformation retained more information than the traditional

learning systems were extracting. This implies that the learning methods used in previous

works (such as support vector machines, random forests, K nearest neighbors, etc...) were

not capable of fitting themselves to the task at hand well enough to extract all necessary

information from the input features. This directly supports the thesis statement of this

dissertation, demonstrating that the deep learning models we learned have been able to

extract more information about cough sounds than the previous works.

Unsatisfied with this result, we next began pushing backpropagation further back, learn-

ing upon the GTFB filter functions themselves. This increased the number of parameters

being learned but gave the model an ability to experiment a bit more in featurespace to try

and determine whether there was more information that could be extracted by altering the

featurespace transformation while holding the overall architecture of the rest of the model

steady. The results showed that yes, indeed, further improvements could be made by allow-

ing the filterbank to be tweaked by backpropagation, although their values did not change

significantly from their original filters. We see two possible reasons for this: the first, and

least likely, is that the gammatone filterbanks are an optimal featurespace transformation

for this particular model architecfture and task. The second, and more likely, is that there

is not enough data to push the model out of the local minimum it begins inside of when

initialized with the GTFB filterbank.

To test these hypotheses, we experimented with randomly initializing the featurespace

transformation matrix and training that toward some kind of filterbank transformation.

The results showed that the system does not gravitate toward a gammatone-filterbank-

like system, however neither does it attain the same accuracy as either the plain GTFB

transformation or the “tweaked” GTFB transformation. This speaks directly to one of the

fundamental axes of this dissertation; that in the presence of limited datasets, domain-specific

knowledge can help a learned system bootstrap itself closer to an optimal result than brute-

force learning could otherwise accomplish. We hypothesize that with a larger dataset, the

randomly-initialized featurespace transformation would be able to converge to a state that
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would meet or exceed the performance of the other two methods.

We reanalyzed our assumption carried over from the world of computer vision that as-

sumed shift invariance in both dimensions of our input data, and created a frequency-variant

convolutional model that was able to perform slightly better than the vanilla convolutional

model. Our analysis of this is that despite requiring more time and data to train due to

the increased parameter counts, the frequency-variant models show significant promise. We

attempted to combine the GTFB tweaking through backpropagation and frequency-variant

models, however the number of parameters rose too high and the model failed to converge

to an optimal result.

We also developed a tool to deal with the fact that the datasets used by this work

were sub-optimal, primarily due to the correlation of dataset provenance and cough class.

Discriminative adversarial networks, as an extension of the adversarial learning field have

applicability far beyond the world of cough classification, and can be employed anywhere

a confounding variable might cause issues within a machine learning model. We showed

their use on our bifurcated cough classification dataset, being used to ignore the acoustic

differences between data samples collected from the two dataset locations, and gave an

example on synthetic data showing the failure modes of the DANs and how to train them

in the presence of challenging data. We furthermore expanded on the applicability of this

learning technique to other problem domains, and showed the general usefulness of the DAN

technique in selecting what pieces of the input a deep learning model should attend to.

Finally, a real-time cough detector was deployed onto a Raspberry Pi-based system and

empirical measurements were taken to ensure that these models lived up to their promise in

terms of memory and computational resource limits. Our results showed that the models were

more than capable of being run at greater than realtime speeds on very limited hardware,

and that architectures similar to this could be deployed to a very broad class of devices. We

hypothesize that there exist still many opportunities for further performance enhancements

to continue to reduce computational load and power requirements, however the targets for

such work are very application-dependent.
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5.1 Limitations of current work

We identify here a few key limitations of the work presented within this dissertation.

• Language model : Comparing our cough detection and classification models to the large

body of work that has been developed for automatic speech recognition, there is a con-

spicuous absence of a “language model”: the piece of a learning system that is able

to make predictions of future events given knowledge of past events. While we briefly

mentioned that attempts to create an RNN-based temporal smoother were unsuccess-

ful, we believe that a system similar in spirit to those investigated here should be able

to have a significant effect on cough detection accuracy. This belief comes from the

observation that coughs are often bunched together and even the inter-cough timing

can often be predicted, so a layer of temporal memory more intelligent than a median

filter (such as an RNN or an HMM) should be able to extract that information.

• DAN convergence: The convergence of discriminative adversarial networks appears to

be highly stochastic in nature. This is likely a function of the ill-conditioning that is

forced upon the gradients backpropagating through the two models and being forced

into opposition with eachother in the shared sections of the model. In some cases,

DANs may be unable to learn anything useful because the error function is unable

to be warped into a shape that allows gradient descent to find a superior minimum.

In order for DANs to truly become a powerful tool, it will be necessary to better

understand the nature of this lack of convergence and to develop tools that can better

guide and shape the application of DANs to real-world problems.

• Confounding variables within datasets : The datasets used within this dissertation,

while much better than any public dataset to our knowledge, suffer from various forms

of imbalance. As repeatedly mentioned throughout, there is the problem of tuberculosis

coughs being very tightly correlated with data collection location. It is also important

to note that while many of the non-tuberculosis coughs are from sputum-producing
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pulmonary ailments, we have not quantified exactly how many of the control coughs

are “wet”. Classifying a cough sound as “wet” vs. “dry” is itself a non-trivial task

that would require a consensus vote between experts, and without this it is difficult to

quantify the effect that the “wet” vs. “dry” confounding variable is having upon the

tuberculosis classification accuracy.

5.2 Future Work

We identify here four main thrusts of future work: increasing cough classification perfor-

mance, broadening classification targets, variable-length inputs and further improving model

runtime performance.

• Increasing cough classification performance: The cough classification results contained

within this dissertation could be improved by reducing the number of confounding

factors within the dataset. There remain many sources of variance within the cough

sounds (stage of tuberculosis infection, amount of sputum being produced per cough,

exactly which pulmonary ailments are represented within the control coughs, level

of background noise) that currently amortized across all results. It would be very

illuminating to examine model performance and training behavior when these sources

of variance within the cough signals are removed, and would likely allow identification

of confounding factors that signficiantly contribute to the false positives of the cough

classification algorithm. We expect this analysis to result in findings such as that

extremely wet coughs from late-stage TB are more easily classified than early-stage

TB where sputum production is not as intense, or that the loud background noise from

fans in the cough collection chamber significantly reduce classification accuracy. From

these findings, a new dataset collection (or a dataset sub-sampling) could be designed

to train models in a more ideal environment, yielding a more accurate cough classifier.

• Broadening classification targets : The cough classification models currently only dis-

ambiguate tuberculosis coughs versus all other pulmonary ailments, however there are
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many other diseases which could benefit from acoustic classification. It would be

very valuable to investigate which pulmonary ailments have distinctive acoustic sig-

natures by training models upon cough sounds from participants with a wide variety

of pulmonary ailments and attempting to classify them using models based off of this

dissertation’s results. This would provide not only a valuable diagnostic tool but also a

dataset for experimentation with more complex deep learning models. As noted previ-

ously, a chief limiting factor of learning these deep models is the lack of large amounts

of data. Up to this point, there is no large, high-quality, public database of cough

sounds that can be used for acoustic model development research. Such a dataset

would aid not only in construction of new healthcare tools, but also the development

of new acoustic analysis tools and the field of machine learning in general.

It remains an open question whether a “forced” cough contains the same pulmonary

information as a natural cough. The data collection process for natural coughs is time-

consuming and uncertain; some patients cough over a hundred times per hour, whereas

others cough merely once or twice an hour. Further investigation is warranted to force

users to cough on-demand, creating an acoustic event that may contain diagnostically

relevant information, and to see if machine learning models can be trained upon such a

dataset to extract that information. The work from [12] serves as a good initial result

in this direction, it is worth investigating to ensure that forced tuberculosis coughs

contain the same pulmonary information as natural coughs, and as such can be used to

classify a forced cough as a tuberculosis cough. This would obviate the need for patient

screening that entails an hour-long process waiting for a natural cough to occur.

• Variable-length inputs Cough sounds are not fixed-length events. Their duration can

last from less than a quarter of a second to well over 5 seconds. This means that the

fixed-length input to our convolutional models either must be large enough so as to

capture all relevant information for long cough events (and capture much irrelevant

information for short cough events) or limit their scope and exclude much relevent
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information for long cough events. In this dissertation, we opted for the latter and found

that we were still able to outperform previous methods by examining relatively short

segments of time (200ms) and combining multiple readings together with a median

filter. However it stands to reason that there may be significant benefits to building

a recurrent convolutional model that is able to ingest variable-length sequences and

detect cough sounds with no pre-set limit on length. Such systems are still an area

of active research and training methodologies have not yet crystalized around a well-

accepted best practice. We hypothesize that this could be a strong contribution not

only to the field of acoustic pulmonary health sensing but also the field of acoustic

machine learning as well.

• Improving model runtime performance: There remain many low-hanging fruits for im-

proving model runtime performance. Starting from a high-level view of the model,

further architectural improvements are likely possible. Separable convolutions [18]

have been shown to have a negligible impact on model accuracy on many computer

vision tasks while boasting an impressive speedup by factorizing convolutional kernels

and restricting their rank within an intermediate operation. Similar transformations

could be made upon these cough detection and classification models to further reduce

parameter count and computational complexity.

On most embedded platforms, integer arithmetic is significantly more time and power

efficient than floating-point. In the extreme, binarization of network weights [20] has

become possible through advancements in training techniques and model architectures.

Accordingly, investigation into the level of quantization that this network can support

may yield further model compression and performance enhancement. Previous works

have shown that many pieces of information within the network can be significantly

compressed or outright discarded depending on the importance the network places

upon that weight [26]. Similar transformations could be enacted upon this network

to create a heterogenously quantized version of the model that has been optimally
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compressed for the particular task of cough detection or classification.

Finally, at the lowest level, the hardware platform being executed upon plays a heavy

role in the overall performance of the system. Persistent recording and acoustic anal-

ysis is become ever more pervasive, with smartphones, smartwatches, home speaker

systems, TVs and even cars running background machine learning models to detect

wakewords, accept voice commands and detect other elements within the acoustic envi-

ronment. These applications are enabled by low-power application-specific integrated

circuits (ASICs) that are able to run machine learning models with much greater ef-

ficiency than a typical general-purpose CPU would be able to. Programming these

ASICs takes significant engineering effort, partly because they are often proprietary

and access to documentation and toolchains is restricted, but also because they are

not yet within the realm of the hobbyist hacker and so the effort to open them up to

general repurpose has so far been avoided. This may soon change however, as the chips

become further commoditized and as machine learning technologies continue to have

the barrier to entry lowered by researchers, corporations and other interested parties.

The logical conclusion is that a device more purpose-built for machine learning than

the Raspberry Pi 3 B+ could be coerced to run our machine learning models at far

greater efficiency than even the Raspberry Pi. This would be ideal for all battery-

powered applications of cough counting and classification, such as on-phone detection,

mobile detection stations, etc...

Finally, discriminative adversarial networks are a general technique that can be utilized

anywhere there are hidden variables correlated with desired data classes that cannot be eas-

ily disentangled. Harnessing the expressivity of deep learning to estimate and then remove

the influence of these confounding variables is a powerful technique, however there remains

further validation work that can be done to learn the limits of this technique and its appli-

cability to new settings and data types. We look forward to other researchers incorporating

this technique into their learning strategies to be able to fold in more disparate datasets than
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would otherwise be possible with traditional learning methods.
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[19] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). arXiv:1511.07289 [cs],
November 2015. arXiv: 1511.07289.

[20] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Train-
ing Deep Neural Networks with binary weights during propagations. arXiv:1511.00363
[cs], November 2015. arXiv: 1511.00363.

[21] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.,
13(1):21–27, September 2006.



83

[22] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathe-
matics, 1992.

[23] S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(4):357–366, August 1980.

[24] T. Drugman, J. Urbain, N. Bauwens, R. Chessini, C. Valderrama, P. Lebecque, and
T. Dutoit. Objective Study of Sensor Relevance for Automatic Cough Detection. IEEE
Journal of Biomedical and Health Informatics, 17(3):699–707, May 2013.

[25] Donald Enarson. Respiratory diseases in the world: realities of today - opportunities for
tomorrow. European Respiratory Society, Sheffield, 2013. OCLC: 868996973.

[26] Josh Fromm, Shwetak Patel, and Matthai Philipose. Heterogeneous Bitwidth Bina-
rization in Convolutional Neural Networks. arXiv:1805.10368 [cs], May 2018. arXiv:
1805.10368.

[27] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. page 8.

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680, 2014.

[29] Marti A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):18–28, July
1998.

[30] J. Y. Hsu, R. A. Stone, R. B. Logan-Sinclair, M. Worsdell, C. M. Busst, and K. F.
Chung. Coughing frequency in patients with persistent cough: assessment using a 24
hour ambulatory recorder. European Respiratory Journal, 7(7):1246–1253, July 1994.

[31] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs], February 2015.
arXiv: 1502.03167.

[32] Richard S. Irwin, Michael H. Baumann, Donald C. Bolser, Louis-Philippe Boulet, Sid-
ney S. Braman, Christopher E. Brightling, Kevin K. Brown, Brendan J. Canning,
Anne B. Chang, Peter V. Dicpinigaitis, Ron Eccles, W. Brendle Glomb, Larry B.
Goldstein, LeRoy M. Graham, Frederick E. Hargreave, Paul A. Kvale, Sandra Zel-
man Lewis, F. Dennis McCool, Douglas C. McCrory, Udaya B. S. Prakash, Melvin R.



84

Pratter, Mark J. Rosen, Edward Schulman, John Jay Shannon, Carol Smith Ham-
mond, Susan M. Tarlo, and American College of Chest Physicians (ACCP). Diagnosis
and management of cough executive summary: ACCP evidence-based clinical practice
guidelines. Chest, 129(1 Suppl):1S–23S, January 2006.

[33] F. Itakura. Line spectrum representation of linear predictor coefficients of speech signals.
The Journal of the Acoustical Society of America, 57(S1):S35–S35, April 1975.

[34] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song.
Neural style transfer: A review. arXiv preprint arXiv:1705.04058, 2017.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], December 2014. arXiv: 1412.6980.

[36] Svetlana Kiritchenko and Saif M. Mohammad. Examining Gender and Race Bias in
Two Hundred Sentiment Analysis Systems. May 2018.
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