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Abstract

A Fresh Look at Functional Connectvity Analysis

Elliot Saba

Functional connectivity analysis attempts to detect methods of communication between

groups of neurons in the brain that may or may not be directly physically connected. We

briefly review current neuroscience methods for functional connectivity analysis, noting the

similarities between the current state of the art as described in Miller et. al [4] and the recent

work in the field of complex-valued statistics pioneered by Scharf et. al [7] and Picinbono

et. al [5]. We apply the techniques of these complex-valued statistics to simulated and

natural data, showing that these techniques are able to correctly and accurately detect a

common mode of communication known as amplitude/phase coupling in the neuroscience

community. This analysis is shown to reinforce the results of the study of in [4], with

the added and substantial benefit of being completely automatic and not requiring human

intervention to produce results.
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Chapter 1

INTRODUCTION

1.1 Overview

The brain is the most mystifying and complex of all organs found in the human body. Un-

derstanding the mechanisms and processes within this bundle of neurons and grey matter

that hosts the phenomenon known as consciousness has become a larger and larger focus of

the biomedical community over the last century, especially with the advent of neuroimag-

ing technologies. Techniques such as Functional Magneto-resonance imaging (fMRI) and

Electro- or Magnetoencephalography (EEG/MEG) opened the doors to exploring the work-

ings of a living brain by measuring the activity of specific areas in the brain over time. By

recording and analyzing this activity during specific tasks, neuroscientists have been able to

infer which areas of the brain are involved in the tasks. This analysis is known as functional

connectivity analysis, as the areas of the brain that show correlated activity may not be

physically connected but are nonetheless communicating in some fashion, collaboratively

performing the task set before the subject.

Applications for methods to discover this sort of connectivity range from the purely

scientific to medical and neuroengineering-oriented. Autism spectrum disorder (ASD) re-

searchers hypothesize that functional connectivity could be a diagnosis method for determin-

ing whether a subject has ASD as well as a valuable tool for understanding the underlying

cause for ASD in the first place [2]. Additionally, state of the art brain-computer interfaces

used for direct neural control of external devices depend on an accurate understanding of

what the signals picked up from the brain represent, a question functional connectivity

analysis attacks directly by investigating the methods of communication within the brain

itself.
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Functional connectivity analysis methods and procedures remain an open area of re-

search, including work on Functional Magnetic Resonance Imaging (fMRI) methods that

infer spatially-separated yet correlated brain activity through blood-oxygen content, as well

as cross-frequency coupling methods that operate directly on the electromagnetic fields

created by neuron activity. In this thesis we will investigate cross-frequency coupling, cate-

gorized into several distinct models, each attempting to quantify interactions between two

signals denoted as the discrete-time signals x1[n] and x2[n]. Depending on the experimental

and analytical paradigm being employed, these signals could either be derived from a single

source signal z[n], (as is the case when comparing two separate regions in frequency from a

single spatial recording location) or could be derived from two separate source signals z1[n]

and z2[n] (as is the case when comparing two separate spatial recording locations). When

dealing with only a single source signal, we will denote it without any subscript, e.g. z[n].

The separate models as described below each represent a different mathematical relation-

ship between the two signals, and each have different physiological reasons behind why they

would be related by those mathematics. We do not attempt to explain the physiological

processes behind the coupling, but instead content ourselves with developing methods to

test each of these hypothesized models:

• Amplitude/Amplitude coupling : This represents the amplitude of one signal correlating

with the amplitude of another. This is commonly referred to as amplitude modulation,

or AM, and represents correlation between the amplitude envelopes of both x1[n] and

x2[n].

• Phase/Phase coupling : This represents the phase of one signal correlating with the

phase of another. This represents a linear relationship between the frequencies of x1[n]

and x2[n], akin to harmonicity.

• Amplitude/Phase coupling : This represents the amplitude of one signal correlating

with the phase of another. In this document we will use the convention that it is the

phase of x1[n] and the amplitude of x2[n] that is coupled.
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Figure 1.1: A simulated example of Amplitude-Phase coupling; this signal z contains a low-
frequency component and a high frequency component, where the phase of the low-frequency
component x1 modulates the amplitude of the high-frequency component x2.

A simulated example of amplitude-phase coupling is shown in Figure 1.1, where a high-

frequency oscillation is more likely to occur at zero sine phase of a low-frequency oscillation.

1.2 Our contribution

This document focuses on Amplitude/Phase coupling, constructing a novel estimator to

detect this coupling, testing that estimator on synthetic data to ensure it captures the signal

properties required of it, and finally testing it on natural data that is a priori known to have

coupling embedded within it. We show that this analysis extracts the same information

garnered by previous methods but most importantly without resorting to methods that

require the intervention of a human which inevitably introduces unpredictable error.
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Chapter 2

BACKGROUND THEORY AND OUR APPROACH

2.1 Modeling of the problem

We model cross-frequency coupling as the interaction between two signals, x1[n] and x2[n].

These signals can be disparate regions of frequency from a single source signal z[n], or can

be from two separate source signals z1[n] and z2[n], the mathematical analysis is the same.

In this thesis we will focus on the case of the two signals originating from a single source z[n]

and representing disparate regions of frequency, although we reaffirm that the mathematics

are identical across the two cases. The hypothesis we wish our estimator to test is that the

phase of x1[n] is in some manner correlated with the amplitude of x2[n]. We define our

terms of “angle” and “amplitude” as follows:

• Angle: The complex angle of the analytic signal of x1[n]:

∠x̂1[n] (2.1)

The analytic signal x̂1[n] is constructed by passing x1[n] through the Hilbert transform,

a transform that negates all negative frequencies from a signal, and then subtracting

the result from the original signal:

x̂1[n] = x1[n] + jH(x1[n]) (2.2)

Therefore, the resultant analytic signal x̂1[n] contains only the positive frequencies of

x1[n] and is complex-valued. Taking the angle therefore corresponds to the “phase”

of the original signal, however we caution that this is only an accurate measure of

instantaneous phase under extremely tight conditions [1]. We ensure that this measure

is accurate in all simulations and analysis by constraining x1[n] to be narrowband by

filtering it before applying Hilbert transforms.
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• Amplitude: The absolute value of the analytic signal of x2[n]:∣∣∣x̂2[n]
∣∣∣ (2.3)

This represents a time-varying spectral energetic measure, once again estimated through

the Hilbert transform of x2[n]. This spectral-energetic measure is widely used in signal

processing for performing just this sort of analysis, however we point out that as we

are taking an absolute value and hence forcing non-negativity, this measure does not

represent amplitude; it is better expressed as magnitude or energy.

Using these two definitions, we can construct an intermediary signal y[n], consisting of

the phase of x1[n] and the magnitude of x2[n]:

y[n] = ∠x̂1[n]
∣∣∣x̂2[n]

∣∣∣ (2.4)

This fits the polar form of a complex variable very naturally, as we have already segre-

gated this quantity into magnitude and phase:

y[n] = a[n]ejθ[n]

a[n] =
∣∣∣x̂2[n]

∣∣∣
θ[n] = ∠x̂1[n]

(2.5)

Therefore we will refer to the magnitude of y[n] as a[n] (or, equivalently, the magnitude

of x2[n]) and to the angle (or phase) of y[n] as θ[n] (or, equivalently, the angle of x1[n]).

We will also refer to a[n] and θ[n] as the “magnitude” and “phase” signals, respectively.

This composite signal y[n] is constructed as described above primarily because it side-

steps a deep theoretical issue when attempting to detect phase/amplitude interactions;

Rather than attempting to estimate the phase of x1[n] directly (an operation that is non-

trivial at best, see [1] and then construct a measure to compare the estimated phase with the

estimated amplitude of x2[n], this composite signal encodes both the phase and magnitude

(a feature closely related to amplitude) of x1[n] and x2[n] respectively into a single signal.

We are then able to correlate the magnitude and phase directly, using a field of mathematics

known as circular statistics [5], which has enjoyed a recent rise in research focus over the

last decade.
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Figure 2.1: Left: A realization of a proper complex random variable, whose probability
density function is rotationally invariant (“Circular”). Right: A realization of an improper
complex random variable, whose probability density function is rotationally variant (”Non-
circular”).

2.2 Circular Statistics Background

Circular statistics aim to quantify the relationship between a complex variable y and its

conjugate y∗. This relationship is important because, as explained by Schreier and Scharf in

[6], there exist significant differences between the class of complex-valued random variables

that lack conjugate correlation (proper variables) and the class of signals that have some

kind of correlation (improper variables). Schreier and Scharf motivate their findings by

noting that improper complex random variables have second-order characteristics that are

not completely described by their traditional covariance E[yy∗] measure, rather they must

be characterized by both their covariance and their complementary covariance, calculated

as E[yy]. In this context, a lack of correlation between y and y∗ translates intuitively to

a random process with a probability density function in the complex plane that is rota-

tionally invariant. Figure 2.1 shows a comparison between a proper and improper complex
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random variable, and illustrates why proper random processes are sometimes referred to as

“circular”.

Schreier and Scharf proposed a method to measure the “non-circularity” of a realization

of a complex random process in [7] via a generalized likelihood ratio test. By measuring the

complementary correlation E[yy], and normalizing by the traditional correlation term E[yy∗]

of the complex-valued vector y, one can determine how improper a particular realization is.

This measure, denoted ρ and defined as:

ρ =
E[yy]

E[yy∗]
(2.6)

0 ≤ |ρ| ≤ 1 (2.7)

has magnitude constrained to be within 0 and 1, where 0 represents a completely proper

signal, and 1 represents a pathologically improper signal. This “non-circularity coefficient”

serves as the basis for detecting coupling in our composite signal y[n], creating a detector

for interactions between the magnitude and phase of a complex random variable.

2.3 Our Method

Given the above background, we can merge the stated concepts and create a detector for

amplitude-phase coupling. We list our algorithm as a series of steps, giving necessary

implementation details yet leaving more in-depth analysis of results for later sections:

• Separation of phase/amplitude portions

First, the original signal(s) must be segregated into x1[n] and x2[n], which represent

the signals from which we will derive the phase signal and magnitude signal, respec-

tively. In this document, this is done using a Daubechies db2 wavelet filterbank with 8

levels. We will take pairwise combinations of wavelet scales and use those pairs as our

a[n] and θ[n] signals, inspecting the interactions between each possible combination

in our search for amplitude/phase coupling.

• Construction of composite signal

Using the segregated a[n] and θ[n] signals, we combine them as shown in equation 2.4
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to generate the composite signal y for each pairwise combination of signals chosen to

be a[n] and θ[n].

• Calculation of non-circularity coefficient

Using the Generalization Likelihood Ratio Test (GLRT) given in equation 2.6, for each

composite signal we calculate the non-circularity coefficient. This therefore defines a

“coupling matrix,” where each row and column correspond to a choice of wavelet

filterbank bin for x1[n] and x2[n], respectively, and the intensity of each entry in the

matrix corresponds to the “coupling coefficient” between those two choices of wavelet

scales of a[n] and θ[n].

We therefore have constructed an algorithm to generate a coupling matrix allowing easily

automated analysis of signals to determine not only if there is coupling in a signal, but also

between which regions in frequency the coupling occurs, as well as its strength.
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Chapter 3

THEORETICAL/SIMULATED RESULTS

To verify the algorithm works as expected, we construct a pair of tests to determine the

failure modes of the analysis. We show that the analysis is robust in the presence of noise,

and that it does not generate false positives when analyzing signals without any inherent

coupling.

3.1 Creation of synthetic test signals

To test the algorithm on signals without coupling, we generate znoise as zero-mean, white

Gaussian noise with standard deviation σ (Where a Gaussian random variable is hereafter

denoted mathematically as N(µ, σ)):

znoise ∼ N(0, σ)

Running the algorithm as outlined in section 2.2, this random process will be segregated

by frequency, transformed into “phase” and “magnitude” portions, and then correlated via

the GLRT to generate the coupling matrix W . Ideally, this signal should result in the zero

matrix, as it should not detect any coupling in the test signal at all.

To test the algorithm on signals with explicit coupling, we generate zcoupling out of two

signals: a low-frequency sinusoid with random amplitude and frequency modulation serving

as the “phase” portion of zcoupling, and a high-frequency noise burst at times that line up

with the phase of the low frequency portion. A realization of such a synthesized signal is

shown in Figure 1.1, where the high-frequency noise bursts occur at sin phase 0 of the low-

frequency component, and the noise burst is shaped via a Gaussian window. This signal is

then added to noise, and passed through the wavelet filterbank described in 2.2 to separate

the signal into low and high frequency components. We are then able to construct the

coupling matrix from the pairwise combinations of low and high frequency components and

plot its magnitude to detect regions in frequency that contain coupling.
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Figure 3.1: Left: A coupling matrix calculated from znoise, showing that no significant
coupling is found in random noise. Right: A coupling matrix calculated from zcoupling,
showing that significant coupling was found between the magnitude of high frequencies and
the phase of a lower frequency.

3.2 Analysis of synthetic test signals

Coupling matrices from both of these test signals are shown in Figure 3.1. Note that the

matrix calculated from znoise is very low-energy, whereas the matrix calculated from zcoupling

has significant energy in the top-right corner. This is consistent with the construction of the

signals, as the top-right corner denotes a low frequency (high wavelet scale) for the phase

signal, and a high frequency (low wavelet scale) for the magnitude signal.

3.2.1 Performance in noise

When analyzing Gaussian noise as a test signal that contains no coupling, it can be shown

that the coupling matrix will converge to the zero matrix. This follows from tracing the

input signal through the filtering operations until it is applied to the generalized likelihood

ratio test, and showing the behavior of the test as a whole when applied to noise. Starting

with an input of znoise, which we assume grows eventually to infinite length, we filter it

through a series of linear filters (wavelet filterbank, Hilbert transform), and then take the
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absolute value or angle of the resultant signal:

a[n] = |h1[n] ∗ znoise[n]| (3.1)

θ[n] = ∠(h2[n] ∗ znoise[n]) (3.2)

Where h1 and h2 represent the combined wavelet and Hilbert transform filters necessary

to generate x1 and x2, respectively, and the ∗ operator refers to signal convolution, rather

than multiplication. As we know that znoise is Gaussian noise, when it is Hilbert transformed

its analytic signal will become a complex Gaussian with independent real and imaginary

parts. Because a linearly filtered Gaussian random process is still a Gaussian random

process, we can use the well-known result that taking the absolute value of the filtered

quantity in 3.1 will result in a Rayleigh distributed random variable. Similarly, the angle

of the filtered quantity in 3.2 will result in a uniformly distributed random variable.

Therefore, if we construct the composite signal y[n] and perform the GLRT test on it,

we can look at how this signal will perform in expectation when fed signals that conform

to these random distributions:

y = a[n]eθ[n] (3.3)

Putting y into the GLRT, we see:

ρ =
E[y[n]T y[n]]

y[n]Hy[n]
(3.4)

=
E[(a[n]eθ[n])Ta[n]eθ[n]]

E[(a[n]eθ[n])Ha[n]eθ[n]]
(3.5)

Because a[n] is real, a[n]H = a[n]T . We also have the identity that (eθ[n])H = (e−θ[n])T ).

Using these, we can reduce the above to:

E[(a[n]eθ[n])Ta[n]eθ[n]]

E[a[n]Ta[n]]
(3.6)

Therefore, we can immediately show that the denominator of the above fraction is a

Rayleigh distribution squared, which becomes an exponential distribution, the mean of

which is well-known. Assuming our initial Gaussian variable had standard deviation σ2, the

Rayleigh distribution of a[n] has parameter σ, and the exponential distribution therefore
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as dashed lines about the mean value, shown as the solid line

has parameter σ as well. Therefore, the expected value of the exponential distribution is

simply σ, and we can replace the denominator of the above fraction with this value:

1

σ
E[(a[n]eθ[n])Ta[n]eθ[n]] (3.7)

Moving forward, we can re-express the expression within the expectation above as fol-

lows:

1

σ
E[
∑
i

a[i]2 · e2θ[i]] (3.8)

Therefore, because a[n] and θ[n] are by construction completely independent, we can

separate them in the expectation:

1

σ

∑
i

(
E[a[i]2]E[e2θ[i]]

)
(3.9)

However, as θ[n] is uniformly distributed, E[·e2θ[i]] = 0, and the whole expectation

reduces to 0. This shows that feeding noise into this algorithm results in the zero matrix,
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and as such this algorithm rejects noise as the signal extends to infinity. This is supported

by experimental results such as those shown in Figure 3.2, where we can see the energy

of the coupling matrix W converging to zero as the length of the noise being analyzed is

increased.

3.2.2 Addition of noise to coupled signal

Combining these two experiments, we can analyze the behavior of the estimator acting upon

a coupled signal in the presence of noise and see how the estimated matrix W deteriorates

as the signal to noise ratio decreases. Simulations on this, (taking the synthetic signal as

described in Section 3 and adding Gaussian white noise to it) are shown in Figure 3.3, where

the power of the noise added to the signal is referenced to the power of the high frequency

component coupled with the low frequency component. Although the signal is eventually

lost due to the noise overwhelming the signal and therefore causing the phase and amplitude

signals even after the filtering to lose all coherence with eachother.

3.2.3 Analysis of phase

Finding the presence of coupling is not the only aim of cross-frequency coupling however,

as it is also desirable to characterize the phase of the low frequency for which the high

frequency component achieves large magnitudes, the so-called “preferred phase”. Attentive

readers may expect that the angle of ρ from Equation 2.6 could be used for this task,

however it is important to remember that ρ is directly proportional to the expected value of

y2, therefore if we assume the form y[n] = a[n]ejφ[n], we can see that the phase of the result

will be doubled, and it is therefore impossible to uniquely determine the original phase of

the distribution from simply the phase of ρ.

Alternative methods exist of course, and as it is not the purpose of this thesis to invent

new methods of estimating the average phase of circular data, we will refer to other prede-

fined methods such as usage of the Fisher-Von Mises distribution [3] or angular histograms,

where the data is grouped into bins of a certain width in phase.

We show a scatter plot of the absolute value of the simulated composite signal y[n]
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Figure 3.3: Left: Coupling matrix of synthetic signal with high-frequency signal twice as
powerful as the background Gaussian noise. Right: Coupling matrix of synthetic signal
with high-frequency signal at the same power the background Gaussian noise.
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Figure 3.4: Plotting the magnitude of the composite signal against the phase of the compos-
ite signal, we recover a compelling visual of the nonuniformity (and hence noncircularity)
of the composite signal y[n]

versus the phase of that same signal in Figure 3.4, as well as a histogrammed version of the

same plot so as to more directly compare with previous work in which such an operation is

typical. In both cases we can see the readily apparent nonuniformity of the distribution of

magnitude across phase, thereby confirming some kind of magnitude-phase coupling.
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Chapter 4

EMPIRICAL RESULTS

In this section we analyze naturalistic data taken from experimental subjects via elec-

trocorticography which has been previously published by Miller et. al and is known to

contain cross-frequency coupling in the form of amplitude/phase coupling [4]. We compare

the previous paper’s methods to our own, and show similar results.

4.1 Data and Previous methods

In Miller et. al [4], electrocorticographic data was collected from epileptic patients while

performing a visual search task. Data was recorded from the occipital lobe via multiple

electrodes, sampled at 1000Hz. The data from the electrodes was demeaned (across elec-

trodes, e.g. the average value of all electrodes was subtracted from each electrode), and

filtered using a wavelet filterbank into separate frequency regions. Low frequency regions

were manually inspected for peaks and valleys and annotated by phase. Miller et. al then

binned high-frequency log-magnitude envelopes (as calculated by the absolute value of the

analytic signal of the high-frequency region being analyzed) by the binned annotated phase

of the low-frequency region.

This analysis resulted in “coupling palettes”, showing uniform distributions of magnitude

across phase when no coupling existed, but a nonuniform distribution when some form of

amplitude/phase coupling existed, similar to the histograms shown in Figure 3.4, but plotted

across multiple choices of magnitude signal frequency. Compared with our proposed method,

there are many similarities, however we aim to contribute to this field in two main areas:

First, our method is completely automatic and does not rely on any phase or time es-

timation on the part of the algorithm or humans, when determining the phase estimate,

or low-frequency oscillations in the analyzed signal. The algorithm does not attempt to

estimate instantaneous phase, either automatically or manually, and as such does not suf-
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Figure 4.1: A coupling matrix calculated from naturalistic data, showing the ampli-
tude/phase coupling inherent in the signal

fer from the problems inherent in estimating that quantity and does not require human

intervention.

Second, our method, apart from initial wavelet filterbank choice, is quite nonparametric.

Binning does not occur after the signal has been segregated, and specifically the detection

of coupling (in our algorithm, done by the generalized likelihood ratio test) does not depend

on an arbitrarily-chosen parameter such as number of bins in time/phase.

We note that the discussion in section 3.2.3 regarding analysis of phase is independent

of the detection of coupling in the first place, and therefore should not be regarded as a

contradiction to the above statements. Section 3.2.3 aims to show that analysis of cou-

pling data from our method contains the same phase preference information as in previous

methods, however the steps needed to gain that data are simpler and better theoretically

justified in our case due to the lack of parameters and human intervention.
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Figure 4.2: Plotting the magnitude of the composite signal against the phase of the compos-
ite signal, we recover a compelling visual of the nonuniformity (and hence noncircularity)
of the composite signal y[n]

4.2 Application to natural data

When run on real data from [4], analysis was performed on data as described in 2.2, and an

example W matrix is shown in Figure 4.1. This result shows that coupling between the two

frequency regions as reported in [4] was successfully found, however Miller et. al furthermore

showed the phase at which the coupling was found between these two frequencies. A method

to calculate this (very similar to that used in Miller et. al) is to bin the magnitudes of

the data by their phase, and this very approach is shown in Figure 4.2. Unfortunately,

Miller et. al do not provide sufficiently fine-grained results for me to check this particular

result against their previously published results, however we are confident that given the

theoretical experiments from Section 3.2.3 this apparent coupling is not the product of

random chance.
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Chapter 5

CONCLUSION

In conclusion, we have proposed a novel method for detecting and analyzing cross-

frequency coupling between two frequencies in signals, and have shown that is provides

satisfactory results on both simulated and naturalistic data. We have compared it to a

previous algorithm, verifying its output and detection capabilities, while still retaining some

advantages over the previous method such as a reduction in parameterization, a theoretically

justified resilience against noise and most importantly a move away from the necessity of

human intervention in the analysis process. These advantages open up the possibility of

mass-analyzing data in way that is not possible when human effort is necessary to complete

the analysis and can possibly open doors in neuroimaging analysis that have previously

been closed, where the amount of data to be analyzed was previously simply too high.

In future work, it would be beneficial to investigate more principled methods of determin-

ing optimal frequency segregations of source signals. Currently, we use a wavelet filterbank,

and although this works well there is currently no satisfactory argument for why wavelets

should work better than other, alternative methods of carving up the frequency domain of

neuroimaging signals. We also encourage deeper investigation of cross-frequency coupling

when the source signals do not originate from the same physical location in the brain. In this

thesis, so as to be able to compare our results with previous work we have limited ourselves

to signals originating from the same location, as that is the extent of the analysis previously

performed on this data, however the end goal of cross-frequency coupling, and the most

intriguing applications are concerned with the communication of disparate frequencies from

disparate locations. The application of the algorithms and mathematics contained within

this thesis follows naturally from the single-location case, and as such this analysis would

likely yield interesting scientific results concerning the nature of our brains.
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