Blind Adaptive Beamforming of Narrowband
Signals using an Uncalibrated Antenna-Array by
Machine Learning
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Abstract—Multiple wireless communication systems compete
within the same frequency range. The spatial domain adds an
extra degree of freedom to the time and frequency domain.
In this paper we introduce a machine learning model in the
spatial domain designed to enhance the signal of interest and
mitigate interfering signals. The method described does not
require a calibrated antenna-array-RF-chain. It is based on a
neural network that learns the structure of the signal of interest
and separates it from other signals in the time, frequency and
spatial domains. It does so without the need of any additional
information and can very easily be used as a ballast to increase
the Signal to Interference and Noise Ratio (SINR).

Index Terms—spatial signal processing, beamforming, interfer-
ence mitigation

I. INTRODUCTION

Wireless communications have become the de facto standard
for most consumer communication and networking systems.
The diversity of wireless communication systems has in-
creased with applications such as smart home, wearables,
and various automation systems increasing in ubiquity . The
number of wireless communication systems is expected to
grow in the foreseeable future [1]. However, the frequency
spectrum for wireless transmission is a limited resource. Usu-
ally, frequency ranges are allocated by government regulatory
agencies. As a result, regional regulatory differences and
other limitations have caused overlap between frequency band
allocations. A prominent example is the 2.4 GHz band, where
systems like Wi-Fi, Bluetooth, ZigBee and multiple Audio-
Video (AV) devices coexist. These circumstances lead to
difficulties in error-free transmission, particularly in crowded
locations.

In addition, Software Defined Radios (SDRs) and other
technological developments are making wireless transmission
more accessible to hobbyists and other non-specialist actors.
For example, recently so called Personal Privacy Devices
(PPDs) have become a problem for Global Navigation Satellite
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System (GNSS) users [2]. PPDs are low-cost jammers used to
mask GNSS signals in order to prevent location tracking by
third parties. Illicit use of such PPDs can interfere with the
use of location information in law enforcement and emergency
situations. Additionally, unintentional jammers, such as mi-
crowave ovens, can cause high power interference in already
crowded frequency bands, such as the popular 2.4 GHz band.

Most conventional wireless communication systems only
utilize the time and frequency domain for signal transmis-
sion. The spatial domain (i.e. utilizing multiple, spatially
separated antenna elements), however, adds an extra degree
of freedom that may be used to overcome the limitations
of these traditional systems. Historically the spatial domain
is rarely used for signal transmission, due to the high cost
involved or the inflexible direction of the beam towards the
receiver or transmitter. However, as signal processing has
shifted from hardware to software and the cost of multiple
antennas has decreased, spatial signal processing has become
more accessible. The use of antenna arrays allows adaptive
change in the direction of the signal beam.

Adaptive signal beamforming is achieved by shifting the
signals from each antenna element in such a way that the
signal of interest sum constructively and interfering signals
sum destructively. If the narrowband assumption! holds, these
shifts can be performed by phase shifts. There are multiple
methods available to calculate these phase shifts. The most
prominent are the Minimum Variance Distortionless Response
(MVDR) and the Linearly Constrained Minimum Variance
(LCMV) beamformers [3]. Both methods require information
about the relative phase of the impinging interferer at each
antenna element. In theory, this is a deterministic calculation
by the Direction of Arrival (DOA) and the displacement of the
antenna elements, or it can be calculated by the eigendecom-
position of the covariance matrix [4]. However, the former

I'Narrowband assumption is valid if 7B % < 1, where B is the Bandwidth
of the signal, d the largest distance between antenna elements and c the speed
of light.



Fig. 1. Exemplary antenna array configuration.

method requires the DOA of the interfering signal, which
might be unknown, and the latter requires information about
the power of the interfering signal with respect to the signal of
interest. The former method also requires a calibrated multi-
antenna-RF-chain. There are essentially two types of gain and
phase mismatches between the antenna channels that need to
be compensated for, if the phase shifts are calculated based
on the DOA:

1) Gain and phase mismatches that are introduced by the
different reception / transmission characteristics of each
antenna element.

2) Gain and phase mismatches that are introduced by
the RF-chain, like down-converters, amplifiers, various
filters, unequal cable lengths, etc.

Mismatches between antenna channels occur due to varying
manufacturing tolerences, vibrations or temperature. The for-
mer is dependent on the DOA, but known to be quite stable
over time and can, therefore, be measured in an anechoic
chamber and saved for later processing [5]. The latter, how-
ever, changes over time and, therefore, needs to be calibrated
during run time.

In this work, we present a neural network-based method
that is able to enhance the signal of interest and mitigate
interfering signals without the need for calibration. It is
similar to the eigendecomposition of the covariance matrix.
The neural network is trained to find the signal of interest
based on its structure. Other signals will be mitigated spa-
tially. The implementation and evaluation are done with the
Julia programming language and the Flux machine learning
framework [6]. Both provide a fast computation platform, and
Flux provides mechanisms to include custom layers into the
neural network without compromised performance.

II. SIGNAL MODEL

Consider an M-element antenna array with an arbitrary
configuration (see Fig. 1). For an impinging signal onto the

antenna array, the wave vector k((p;, 6;) is defined as

cos(6;) sin(p;)
cos(0;) cos(ip;) |, (1)
c sin(6;)

k((pia 91) =

where ¢; and 6; are the azimuth and elevation angle of the i-th
impinging signal respectively and )\ is the carrier wavelength.
With the antenna position vector r,, the steering vector is
determined by

e—jk(%ﬂi)Trl

a(p;,0;) = : . 2
e—jk(%‘ﬂi)Tl‘M

This vector represents the phase shifts of an impinging signal
from a given DOA described by azimuth and elevation. Prior
to signal digitalization, a signal may be influenced by multiple
gain and phase distortions, like reception characteristics of
each antenna element, amplifiers, downconverters, and filters.
These mismatches are expressed by the vector ¢ € CM,
Note that all antenna channels must be downconverted with
almost the exact same frequency to guarantee a stable phase
relationship within a small period of time. This is essential
for the estimation of the covariance matrix that is part of the
neural network (see next section for more details). The antenna
array output for the i-th signal finally yields

x;(t) = diag (c) [a(ps, 0:)si(t) +n(t)], 3)

where n(t) € CM represents Gaussian white noise of variance
o2 and s;(t) the incoming signal, which could be either the
signal of interest or an interfering signal. The gain and phase
mismatch also affects the noise term, since the dominant noise
is generated at the antenna array or at the Low Noise Amplifier
(LNA). The varying gain and phase mismatch follows down
the chain.

Assuming a single signal of interest and Z interfering
signals, the digitized signal yields

x(t) =
z
diag (c) |a(p, 0)s(t) + > alpri, 0ni)s.i(t) + nt) |, (4)
i=1
where s(t) € C is the signal of interest and s, ;(t) € C the
interfering signal. This signal model is used for training of the
neural network.

III. NEURAL NETWORK

Consider the neural network shown in Fig. 2. The first layer
filters the signal of interest from interfering signals in the
time and frequency domain. This first layer is not an ordinary
convolutional filter, but rather two convolutional filters that
are repeated over the antenna channels. Therefore, the same
filters are applied to all antenna channels. This is crucial to
preserve the phase relationship among the antenna channels.
The activation function of this layer is the identity, the signal
is not padded before applying the filter and the filter length
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has been set to 40. The next layer is the calculation of the
upper triangular block of the covariance matrix, including the
variance of each channel. This is inspired by the state of
the art beamformers MVDR, LCMV and eigen-beamformer,
all of which use the covariance matrix for beamforming.
Here only the upper triangular matrix is calculated, because
the covariance matrix is Hermitian and the lower triangular
matrix, therefore, holds the same but conjugated information.
From there on, multiple dense layers follow to estimate a
beamformer that enhances the signal of interest and mitigates
interfering signals. All of these dense layers use the activation

function
ctanh(z) = tanh(|x\)%, )

which was introduced by Pfeifenberger in [7]. The real and
imaginary part of this function are given in Fig. 3a and Fig. 3b

respectively. In contrast to other activation functions preserves
this activation function the complex valued information.

The loss function is the Mean Squared Error (MSE) between
the beamformed measurement and the true signal of interest.
The beamformer is normalized by its first element before it is
applied to the measurement.

The model is trained by simulations, as there are no large
real-world datasets available. Creating such a dataset would
require a tremendous amount of work of creating physical
measurements with a signal of interest and an interfering signal
with varying power, different DOAs, varying gain and phase
mismatches, etc. and appears infeasible. The simulation is
carried out as follows: For each training data for the neural
network the measurement is simulated according to equation
(4). For the purpose of this evaluation a 2 by 2 Uniform
Rectangular Array (URA) is simulated, where the mutual
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(b) Signal of interest: Quadrature Modulation (QM).

Fig. 4. Training loss, validation loss and learning rate over number of epochs (first stage).

distance of the antenna elements is half the center wavelength.
The phase mismatch for each antenna channel is randomly
taken from a uniform distribution from 0 to 27. The gain
mismatch is taken from a normal distribution of N (1.0, 0.1).
Both gain and phase mismatch are fixed throughout a single
simulation of the measurement, but vary with every taken
measurement. This is due to the assumption, that the gain and
phase mismatch only slowly vary over time. The noise n(t) is
simulated as white Gaussian noise. In the following evaluation
only a single interfering signal is evaluated next to the signal
of interest. Note that only M — 1 signals can be separated
spatially, when using an M -element antenna array. The DOA
of both signals is randomly chosen in three-dimensional space.
They are not restricted to be distinct from each other.

Two types of training have been carried out to evaluate the

performance of the model with different types of signals:

1) o Signal of interest: Continuous Wave (CW) signal at
the center frequency plus a Doppler with a standard
deviation of 100 Hz.

o Interfering signal: CW signal with an arbitrarily
chosen frequency between —2.5 MHz and 2.5 MHz
around the center frequency.

Signal of interest: Quadrature Modulation (QM)

signal at the center frequency plus a Doppler with

a standard deviation of 100 Hz. The code frequency

is set to 2 MHz and the QM signal consists of 4

symbols.

o Interfering signal: CW signal with an arbitrarily
chosen frequency between —2.5 MHz and 2.5 MHz
around the center frequency.

2) .

The power of the signal of interest is set to 10 dB. The sym-
bols within the QM signal are randomized for each training
set. The model is trained in a two-stage process. In the first
stage, the model is trained with an interfering signal that has
the same power as the signal of interest to emphasize that the

structure of the signal is important instead of the signal power.
In the second stage, the model is trained with an interfering
signal that has a varying power from —10dB to 20dB. The
center frequency is set to 2.4 GHz and the sampling frequency
is set to 5 MHz. Each simulated measurement contains 200
samples, that correspond to time span of 40 ps. The batch size
of each training set is 100. Each epoch includes the evaluation
of 100 batches. For each epoch new batches are generated by
the simulator explained above. Adam has been chosen as the
optimization algorithm [8].

IV. RESULTS

Fig. 4 shows the results of the training loss and validation
loss over the number of epochs for both signal types within
the first stage. Fig. 7 shows the corresponding results for the
second stage. The training loss is a metric used to assess
how a deep learning model fits the training data, whereas
validation loss is a metric used to assess the performance of a
deep learning model on the validation set. The validation set
is performed by the same simulation generator as explained
above. The validation loss is monitored over the number of
epochs. If the validation loss has not improved over the period
of 50 epochs, the learning rate 7 is dropped by a tenth. If the
validation loss has not improved over the period of 100 epochs,
the training is aborted.

The performance of the proposed neural network is evalu-
ated using a Monte-Carlo simulation. The randomly varied pa-
rameters are the DOA for the signal of interest, the interfering
signal, the gain and phase mismatch, the Doppler of the signal
of interest, the frequency of the interfering signal and their
starting phases like in the training sequences. The power of the
interfering signal is varied on the x-axis with 500 Monte-Carlo
samples taken for each power level of the interfering signal.
The proposed machine learning beamformer is compared to
MVDR and LCMV (see Fig. 5a), representing state-of-the-
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Fig. 5. Monte-Carlo simulation to evaluate the Machine Learning (ML) beamformer against state of the art beamformer. Note that the state of the art
beamformers have access to the spatial information of the impinging signals, e.g. the exact steering vector of the interfering signal or the steering vector of
the signal of interest. In contrast, the ML calculates the beamformer only based on the incoming measurement.
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Fig. 6. Exemplary beamform pattern.

art beamforming methods. The figure of merit is SINR gain
due to application of the beamformer. Since beamforming is
a linear process, it is applied to the signal of interest and the
interfering signal separately to calculate the SINR. The SINR
gain is the ratio of the SINR before and after the beamformer
is applied.

The machine learning beamformer outperforms the state of
the art beamformer for small JNRs. Moreover, it achieves the
optimal gain of M = 4 (ca. 6 dB) in the case of low-powered
interference, whereas the state of the art beamformers fall
behind by a few decibels. This is due to the fact that the
interfering signal is always nullified by the state of the art
beamformer. This projection reduces the signal space by one

dimension. However, this is an unreasonable harsh measure
against a low-powered interfering signal. This could be ac-
commodated by a threshold on the power of the interfering
signal. However, the great advantage of the ML beamformer
is that such thresholds are not required. This advantage is
illustrated in Fig. 6a and Fig. 6b. Both figures demonstrate
the pattern of the amplification, that is gained by applying
the ML beamformer. Fig. 6a shows the effect of a low power
jammer and Fig. 6b shows the effect of a high power jammer.
In the case of a low power jammer a hard null is not required
for the DOA of the jammer. Instead, the amplification for the
signal of interest is maximized. In the case of a high power
jammer it makes sense to mitigate the interfering signal to a



larger extent. Due to this projection the signal of interest can
not be maximized to its optimal value.

A disadvantage of the proposed ML beamformer is that for
high power interference, the machine learning falls behind the
state of the art beamformers, but it is still well above the
positive SINR. Nonetheless, high power interference should
be the rare case. Therefore, it is better to optimize the
case without loud jammers. Note that the state of the art
beamformers used for comparison have access to the spatial
information of the impinging signals, e.g. the exact steering
vector of the interfering signal or the steering vector of the
signal of interest. Such vectors can be difficult to estimate in
a dynamic scenario, especially if gain and phase mismatches
between antenna channels are considered within the RF-chain.
In contrast, the ML calculates the beamformer only based on
the incoming measurement. It does so by incorporating the
time, frequency and spatial domain.

V. CONCLUSION

Within the research of this paper a machine learning beam-
former has been developed. It adopts some principles of
existing beamformers, such as the calculation of covariance
matrices, and incorporates them into a neural network archi-
tecture. Compared to the state of the art beamformers, the
machine learning beamformer does not require the steering
vector of the interfering signal nor does it require the steering
vector of the signal of interest. The great benefit of the
proposed beamformer is that it can find the signal of interest
by only evaluating the incoming measurement. The neural
network returns a beamformer that enhances the signal of
interest and mitigates any interfering signal in such a way
that the SINR is increased. Thereby, it performs better than
the compared state of the art beamformers for low JNRs.
No threshold is required to detect and mitigate an interfering
signal. The neural network is self-contained in the sense that
it gets the (disturbed) measurement as an input and outputs
the clean signal of interest by applying the beamformer.
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